Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/77786
PIRA download icon_1.1View/Download Full Text
Title: A general iterative approach for the system-level joint optimization of pavement maintenance, rehabilitation, and reconstruction planning
Authors: Zhang, L 
Fu, L 
Gu, W 
Ouyang, Y
Hu, Y
Issue Date: Nov-2017
Source: Transportation research. Part B, Methodological, Nov. 2017, v. 105, p. 378-400
Abstract: We formulate a general bottom-up model for the joint optimization of maintenance, rehabilitation, and reconstruction (MR&R) schedules for a system of heterogeneous pavement segments under budget constraints. The objective is to minimize the total costs incurred to both the highway users and the pavement management agency. We propose a Lagrange multiplier approach together with derivative-free quasi-Newton algorithms to solve the problem for two scenarios: i) with a combined budget constraint for all the treatments; and ii) with one budget constraint for each treatment. The system-level solution approach has the following merits: i) it can be applied to problems with any forms of segment-level models for user and agency costs, deterioration process, and treatment effectiveness, given that the solution to the segment-level problem is available; ii) under the combined budget constraint, it ensures that the optimality gap of the system-level solution is bounded by a term that depends upon the optimality gap of the segment-level solutions; and iii) it exhibits linear complexity with the number of segments. At the segment level, a new maintenance effectiveness model fitted on empirical data is proposed and incorporated into the MR&R optimization program. A greedy heuristic algorithm is developed, which greatly reduces the computation time without compromising the solution quality. Combining the system- and segment-level models and solution algorithms, we examine a batch of numerical cases. The results show considerable cost savings from the incorporation of maintenance, and from jointly optimizing the use of a combined agency budget. A number of managerial insights stemmed from the numerical case studies are discussed, which can help highway agencies formulate more cost-efficient MR&R plans and budget allocation.
Keywords: Budget constraints
Lagrange multiplier
Preventive maintenance model
Quasi-Newton methods
System-level MR&R planning
Publisher: Pergamon Press
Journal: Transportation research. Part B, Methodological 
ISSN: 0191-2615
EISSN: 1879-2367
DOI: 10.1016/j.trb.2017.09.014
Rights: © 2017 Elsevier Ltd. All rights reserved.
© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
1700_Manuscript_TRB_1878.pdfPre-Published version2.25 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

102
Last Week
1
Last month
Citations as of Apr 14, 2024

Downloads

125
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

32
Last Week
0
Last month
Citations as of Apr 12, 2024

WEB OF SCIENCETM
Citations

28
Last Week
0
Last month
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.