Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/603
PIRA download icon_1.1View/Download Full Text
Title: One-dimensional tunable ferroelectric photonic crystals based on Ba[sub 0.7]Sr[sub 0.3]TiO₃/MgO multilayer thin films
Authors: Jim, KL
Wang, D
Leung, DCW 
Choy, CL 
Chan, HLW 
Issue Date: 21-Apr-2008
Source: Journal of applied physics, 21 Apr. 2008, v. 103, no. 8, 083107, p. 1-6
Abstract: Tunable photonic crystals (PCs) have attracted much attention in the past decade because of their various applications, such as ultrafast optical filters and optical waveguides with add-drop functionalities. One way of achieving tunability is to make use of ferroelectric materials since the refractive index of ferroelectric materials can be electrically tuned through the electro-optic effect. In this paper, we present our work on developing a tunable one-dimensional (1D) PC based on a Ba[sub 0.7]Sr[sub 0.3]TiO₃/MgO multilayer structure. The photonic band structures and band gap maps of the PC were calculated by using the plane-wave expansion (PWE) method. It is found that the gap center linearly shifts with the change in the refractive index of Ba[sub 0.7]Sr[sub 0.3]TiO₃. A ferroelectric 1D PC consisting of a Ba[sub 0.7]Sr[sub 0.3]TiO₃/MgO multilayer thin film was epitaxially deposited on a MgO (001) single-crystal substrate by pulsed laser deposition. A photonic band gap in the visible region is observed in the transmission spectrum of the multilayer thin film. The center wavelength of the band gap is ~464 nm, which agrees with the simulation results obtained by the transfer matrix method. The band gap can be tuned by applying an electric field E. The band gap shifts by about 2 nm when the thin film is subjected to a dc voltage of 240 V (E~12 MV/m). This shift corresponds to an ~0.5% change in the refractive index of the Ba[sub 0.7]Sr[sub 0.3]TiO₃ layer, as calculated by the PWE method.
Keywords: Barium compounds
Ferroelectric thin films
Magnesium compounds
Multilayers
Photonic band gap
Photonic crystals
Pulsed laser deposition
Refractive index
Strontium compounds
Visible spectra
Publisher: American Institute of Physics
Journal: Journal of applied physics 
ISSN: 0021-8979
EISSN: 1089-7550
Rights: © 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in K. L. Jim et al., J. Appl. Phys. 103, 083107 (2008) and may be found at http://link.aip.org/link/?jap/103/083107
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
photonic-crystals_08.pdf661.11 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

59
Last Week
0
Last month
Citations as of Aug 7, 2022

Downloads

156
Citations as of Aug 7, 2022

SCOPUSTM   
Citations

50
Last Week
0
Last month
0
Citations as of Aug 4, 2022

WEB OF SCIENCETM
Citations

45
Last Week
1
Last month
1
Citations as of Aug 4, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.