Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/4606
PIRA download icon_1.1View/Download Full Text
Title: Picosecond soliton transmission by use of concatenated gain-distributed nonlinear amplifying fiber loop mirrors
Authors: Cao, WH
Wai, PKA 
Issue Date: 10-Dec-2005
Source: Applied optics, 10 Dec. 2005, v. 44, no. 35, p. 7611-7620
Abstract: Stable picosecond soliton transmission is demonstrated numerically by use of concatenated gain-distributed nonlinear amplifying fiber loop mirrors (NALMs). We show that, as compared with previous soliton transmission schemes that use conventional NALMs or nonlinear optical loop mirror and amplifier combinations, the present scheme permits a significant increase of loop-mirror (amplifier) spacing. The broad switching window of the present device and the high-quality pulses switched from it provide a reasonable stability range for soliton transmission. We also show that a soliton self-frequency shift can be suppressed by the gain-dispersion effect in the amplifying fiber loop and that soliton-soliton interactions can be partially reduced by using lowly dispersive transmission fibers.
Keywords: Light amplifiers
Mirrors
Nonlinear optics
Numerical methods
Switching
Publisher: Optical Society of America
Journal: Applied optics 
ISSN: 1559-128X
EISSN: 2155-3165
DOI: 10.1364/AO.44.007611
Rights: © 2005 Optical Society of America. This paper was published in Applied Optics and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-35-7611. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Cao_Picosecond_soliton_transmission.pdf333.64 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

128
Last Week
1
Last month
Citations as of Mar 24, 2024

Downloads

168
Citations as of Mar 24, 2024

SCOPUSTM   
Citations

18
Last Week
0
Last month
0
Citations as of Mar 28, 2024

WEB OF SCIENCETM
Citations

11
Last Week
0
Last month
0
Citations as of Mar 28, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.