Decoupling Control of MSM Rotor with Heavy Self-weight and Great Moment of Inertia Based on Internal Model Control

Biao Xiang* and Wai ong Wong
1, Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China

*Corresponding author: thomas.biao@gmail.com

Abstract—The control performance of magnetically suspended motor (MSM) with heavy self-weight and great moment of inertia is affected by parameter uncertainty and external disturbances, and the coupling effect in radial tilting of MSM becomes serious with the increase of rotational speed and moment of inertia, and then the robustness would be reduced. Therefore, an internal model control (IMC) model is proposed to adjust the robustness of MSM. Based on the IMC model, a decoupling IMC model is designed for MSM on four degrees of freedom. Simulation and experiment are conducted to verify that the IMC model improves the robust stability of MSM, and the decoupling IMC model effectively realizes the decoupling control of MSM on four degrees of freedom.

Index Terms: magnetically suspended motor; coupling effect; internal model control; decoupling control; robust stability

1. Introduction

The magnetically suspended rotational machine has been widely applied in high-speed motors (Li et al., 2020), centrifugal compressors (Han et al., 2016), pumps (Asama et al., 2014; Masuzawa et al., 2003; Wang et al., 2019) and robot system (Cole and Fakkaew, 2018) because of its advantages on controllability (Xiang and Tang, 2015; Barbaraci, 2016), zero-friction (Xiang and ong Wong, 2019; Barbaraci et al., 2013) and lubrication-free (Cui and Cui, 2017). The PID control is a common method (Parada et al., 2017; Wei and Söffker, 2016; Tang et al., 2017; Ahrens et al., 1996) to realize the displacement control of MSM rotor. Other control schemes were also used to displacement control of MSM rotor to improve control performances on response speed, tracking precision and robustness. For example, the feed-forward control was used to reduce the vibration response of a magnetically suspended motor (MSM) (Zheng and Feng, 2016). In addition, the robust control (Noshadi et al., 2017; Rubio, 2018; Pesch et al., 2015), the sliding mode control (Zad et al., 2018; Rubio et al., 2019)
and the fuzzy control (Couzon and Der Hagopian, 2007; Haiping et al., 2010) were used to the displacement control of MSM rotor. However, those MSM rotors in above-mentioned literatures are ‘normal’ size, so the self-weight did not cause serious influence on the displacement control.

For the MSM rotor with heavy self-weight, the displacement stiffness and the current stiffness easily deviate from nominal values, so this kind of MSM rotor is more sensitive to external disturbances and parameter uncertainty than ‘small’ MSM rotors (Guo et al., 2016). There are coupling terms in radial rotations of MSM rotor, and they become significant with the increase of rotational speed.

Moreover, the internal model control (IMC) has characteristics on virtually affecting robustness through parameter design, so the stability of control system is guaranteed, and the structural model identification of control plant is not needed. Therefore, the robustness of control plant was tuned by adjusting the filter parameter (Garcia and Morari, 1982; Rivera et al., 1986). An IMC model with cross-coupling integrator was applied to a permanent magnet synchronous machine (PMSM) (Zad et al., 2018). The analysis results showed that the IMC model had lower parameter sensitivity, and an oscillation was avoided by applying a decoupling IMC (DIMC). A speed regulation strategy based on an IMC model and fuzzy adaptive law was designed to mitigate the sensitivity to input saturation and to improve speed tracking precision. It automatically tuned control parameters of rotational speed (Li and Gu, 2012). A control strategy combining an inverse system and an IMC model was proposed to mitigate the gyroscopic effect in a magnetically suspended control moment gyro (Fang and Ren, 2010), and it was proved that the IMC model is useful on suppressing gyroscopic terms of MSM rotor. Based on the inverse system theory and an IMC model, a decoupling control scheme was designed for an active magnetic bearing (AMB) to suppress unmodeled dynamics (Sun et al., 2017).

Therefore, the IMC and DIMC models are potential to improve the robustness of MSM rotor with heavy self-weight and great moment of inertia. The robust stability of MSM rotor could be regulated by the IMC model, and the coupling effect could also be mitigated. In this article, an IMC model is designed for an MSM rotor with heavy self-weight and great moment of inertia. The DIMC model could realize the decentralized control of MSM rotor on four DOFs, so the robust stability of MSM rotor at high rotational speed could be improved.

This article is organized as follows. In section 2, structure and dynamic models of MSM
rotor are introduced. The IMC and DIMC models are designed in section 3. The simulations are conducted in section 4. The experiments are conducted to compare performances of two control models in section 5. Finally, conclusions are summarized in section 0.

2. Structure and Modeling of MSM Rotor

2.1. Modelling of MSM Rotor

The structure of an MSM rotor is depicted in Fig. 1(a); and it consists of a rotor system and a suspension system. The rotor system contains a flywheel (FW) rotor with 150Kg and a PMSM. The suspension system has a magnetic suspension system and a backup ball bearing system. The axial AMBs at lower and upper end of FW rotor stably suspend it at the axial equilibrium point. The radial AMBs at lower and upper end control radial translation and tilting of MSM rotor. As a protective component, the backup ball bearings hold the MSM rotor upright when the magnetic suspension system fails to work.

The force analysis of MSM rotor is plotted in Fig. 1(b). The rotation about the axial axis is controlled by the PMSM, and the motions in other five DOFs are controlled by axial and radial AMBs. Considering the lower radial displacement sensor is symmetric to upper displacement sensor in axial direction, for radial translation and radial tilting of MSM rotor, the equations of motion are

![Fig. 1. (a) prototype of MSM rotor, (b) force analysis of simplified model.](image-url)
\begin{equation}
\begin{aligned}
    m\ddot{x} &= f_{uxx} - f_{uxi} + f_{ixx} - f_{ixi} = f_{ux} + f_{ix} \\
    m\ddot{y} &= f_{uyy} - f_{uyi} + f_{iyy} - f_{iyi} = f_{uy} + f_{iy} \\
    J_x \ddot{\alpha} &= f_{uy} \times I - f_{iy} \times I + J_z \Omega \dot{\beta} \\
    J_y \ddot{\beta} &= f_{ux} \times I - f_{ix} \times I - J_z \Omega \dot{\alpha}
\end{aligned}
\end{equation}

where \( J_x = J_y \) is equatorial moment of inertia, and \( J_z \) is polar moment of inertia. \( d_x \) and \( d_y \) are radial displacements along \( x \)-axis and \( y \)-axis, respectively. \( l \) is the suspension span of radial AMB. \( \alpha \) and \( \beta \) are tilting angles about radial axes, respectively. \( \Omega \) is rotational speed about \( z \)-axis.

The MSM rotor works at the balanced state when resultant forces and torques acting on it equal to zero. If not, it is at a nonequilibrium state. For example, the MSM rotor tilts an angle \( \alpha \) about \( x \)-axis in Fig. 1(b). Since the suspension span of upper radial AMB is same as that at lower end, radial displacements and tilting angles are

\begin{equation}
\begin{aligned}
    d_x &= (d_{ux} + d_{ix})/2; \\
    d_y &= (d_{uy} + d_{iy})/2; \quad \alpha = (d_{uy} - d_{iy})/2l; \quad \beta = (d_{ux} - d_{ix})/2l
\end{aligned}
\end{equation}

The equations of motion are rewritten into

\begin{equation}
\begin{aligned}
    m \left( \frac{\ddot{d}_{ux} + \ddot{d}_{ix}}{2} \right) &= f_{ux} + f_{ix} \\
    m \left( \frac{\ddot{d}_{uy} + \ddot{d}_{iy}}{2} \right) &= f_{uy} + f_{iy} \\
    J_x \left( \frac{\ddot{d}_{uy} - \ddot{d}_{iy}}{2l} \right) &= f_{uy} \cdot I - f_{iy} \cdot I + J_z \Omega \left( \frac{\ddot{d}_{ux} - \ddot{d}_{ix}}{2l} \right) \\
    J_y \left( \frac{\ddot{d}_{ux} - \ddot{d}_{ix}}{2l} \right) &= f_{ux} \cdot I - f_{ix} \cdot I - J_z \Omega \left( \frac{\ddot{d}_{uy} - \ddot{d}_{iy}}{2l} \right)
\end{aligned}
\end{equation}

Furthermore, the control forces of radial AMB in four DOFs are
\[
\begin{align*}
    f_{ux} &= \frac{m}{4} (\ddot{a}_{ux} + \ddot{a}_{lx}) + \frac{J_x}{4f^2} (\ddot{a}_{ux} - \ddot{a}_{lx}) - \frac{J_x \Omega}{4f^2} (\ddot{a}_{uy} - \ddot{a}_{ly}), \\
    f_{lx} &= \frac{m}{4} (\ddot{a}_{lx} + \ddot{a}_{ux}) - \frac{J_x}{4f^2} (\ddot{a}_{ux} - \ddot{a}_{lx}) + \frac{J_x \Omega}{4f^2} (\ddot{a}_{uy} - \ddot{a}_{ly}), \\
    f_{uy} &= \frac{m}{4} (\ddot{a}_{uy} + \ddot{a}_{by}) + \frac{J_y}{4f^2} (\ddot{a}_{uy} - \ddot{a}_{by}) + \frac{J_y \Omega}{4f^2} (\ddot{a}_{ux} - \ddot{a}_{lx}), \\
    f_{ly} &= \frac{m}{4} (\ddot{a}_{ly} + \ddot{a}_{uy}) - \frac{J_y}{4f^2} (\ddot{a}_{uy} - \ddot{a}_{by}) - \frac{J_y \Omega}{4f^2} (\ddot{a}_{ux} - \ddot{a}_{lx}),
\end{align*}
\] (4)

2.2. Modeling of AMB System

![Prototype of radial AMB and equivalent magnet circuit](image)

The prototype of a radial AMB is illustrated in Fig. 2(a), and the equivalent magnet circuit is plotted in Fig. 2(b). The magnet fluxes pass through stator, magnet ring, airgap and rotor. The equivalent reluctances \((R_1-R_8)\) of airgap and magnet ring are in series connection within the same magnet pole. \(N\) is the turn of winding, and \((I_1-I_8)\) are the control currents of winding. The equivalent reluctances of radial AMB in four channels are, respectively

\[
\begin{align*}
    R_{y+} &= R_1 + R_2 = \frac{2d_{y+}}{\mu_0 A_{y+}}, & R_{y-} &= R_5 + R_6 = \frac{2d_{y-}}{\mu_0 A_{y-}}, \\
    R_{x+} &= R_3 + R_4 = \frac{2d_{x+}}{\mu_0 A_{x+}}, & R_{x-} &= R_3 + R_4 = \frac{2d_{x-}}{\mu_0 A_{x-}},
\end{align*}
\] (5)

where \(d_{n=x+,x-,y+,y-}\) is the radial airgap, \(\mu_0\) is the vacuum permeability, and \(A_{n=x+,x-,y+,y-}\) is the radial cross-sectional area of magnet pole. The magnet fluxes of radial AMB in four channels are
\[
\begin{align*}
\Phi_{y^+} &= \frac{NI_1+NI_2}{R_1+R_2}; \quad \Phi_{y^-} = \frac{NI_5+NI_6}{R_5+R_6} \\
\Phi_{x^+} &= \frac{NI_7+NI_8}{R_7+R_8}; \quad \Phi_{x^-} = \frac{NI_1+NI_4}{R_1+R_4}
\end{align*}
\]

(6)

The magnetic forces of radial AMB are
\[
\begin{align*}
 f_{y^+} &= \frac{\Phi_{y^+}^2}{\mu_0A_{y^+}}; \quad f_{y^-} = \frac{\Phi_{y^-}^2}{\mu_0A_{y^-}} \\
 f_{x^+} &= \frac{\Phi_{x^+}^2}{\mu_0A_{x^+}}; \quad f_{x^-} = \frac{\Phi_{x^-}^2}{\mu_0A_{x^-}}
\end{align*}
\]

(7)

The resultant magnetic forces of radial AMB are
\[
\begin{align*}
 f_x &= f_{x^+} - f_{x^-} = \frac{\mu_0AN^2}{4} \left[ \frac{(I_0+i_x)^2}{(d_0-d_x)^2} - \frac{(I_0-i_x)^2}{(d_0+d_x)^2} \right] \\
 f_y &= f_{y^+} - f_{y^-} = \frac{\mu_0AN^2}{4} \left[ \frac{(I_0+i_y)^2}{(d_0-d_y)^2} - \frac{(I_0-i_y)^2}{(d_0+d_y)^2} \right]
\end{align*}
\]

where \( I_0 \) is the bias current, and \( i_x \) and \( i_y \) are control currents. The derivative of magnetic force with respect to displacement is the displacement stiffness, and the derivative of magnetic force with respect to current is the current stiffness. The current stiffness \( k_{ix} \) and the displacement stiffness \( k_{dx} \) are
\[
\begin{align*}
 k_{ix} &= k_{iy} = \frac{\mu_0AN^2I_0}{d_0^2} \\
 k_{dx} &= k_{dy} = \frac{\mu_0AN^2I_0^2}{d_0^3}
\end{align*}
\]

(9)

The magnetic forces of AMB system are
\[
\begin{align*}
 f_{wx} &= k_{ix}i_{wx} - k_{dx}d_{wx}; \quad f_{ix} = k_{ix}i_{ix} - k_{dx}d_{ix} \\
 f_{wy} &= k_{iy}i_{wy} - k_{dy}d_{wy}; \quad f_{iy} = k_{iy}i_{iy} - k_{dy}d_{iy}
\end{align*}
\]

(10)

Therefore, the equivalent model of magnetic force is used to design the control model of MSM rotor.

2.3. Deviation Characteristics of MSM Rotor

When the biased displacement \( d_0 \) and the cross-sectional area \( A \) of the AMB deflects from the nominal values at the initial installation, the relationships among the current stiffness,
the displacement stiffness and the biased displacement are shown in Fig. 3. In radial direction, the biased displacement is defined as 1mm, and the deviation range is 0.2mm. The nominal value of the radial current stiffness is 620N/A, and the nominal displacement stiffness is -2800N/mm in radial direction. When the biased displacement deflects 0.1mm from the biased value, the deflection value of the radial current stiffness is 100N/A as marked by the red line in Fig. 3(a), and the deflection of the radial displacement stiffness is 1000N/mm in Fig. 3(b).

When the axial biased displacement sets at 1.3mm with 0.2mm deviation range, the nominal value of the axial current stiffness is 470N/A, and the nominal displacement stiffness is -1700N/mm in axial direction. If the axial displacement of MSM rotor deflects 0.1mm from the equilibrium position, the deviation term of axial current stiffness is 60N/A, and the deflection value of axial displacement stiffness is 350N/mm.

![Fig. 3. (a) Current stiffness versus biased displacement, (b) displacement stiffness versus biased displacement.](image)

Moreover, the comparison between the calculated and measured results is shown in Fig. 4, the nominal value is marked by the blue line, and the measured result is marked by the red line. As shown in Fig. 4(b), the measured result of the radial current stiffness is 608N/A, and the measured result of radial displacement stiffness is -2810N/mm. As illuminated in Fig. 5, the measured result of the axial current stiffness is 480N/A, and the measured value of the axial displacement stiffness is -1702N/mm. Therefore, there are differences between the nominal
results and the measured results, so the deviation of the AMB could affect the stability of MSM rotor.

Fig. 5. (a) Axial magnetic force versus control current, (b) axial magnetic force versus displacement.

2.4. Control Model of MSM Rotor

Substituting (10) into (4), the control currents of radial AMB in four channels are

\[
\begin{cases}
i_{ax} = a_0 \ddot{d}_{ax} + a_1 \dot{d}_{ax} + a_2 \dot{d}_{ax} - a_3 \left( \ddot{d}_{ay} - \ddot{d}_{by} \right) \\
i_{bx} = a_0 \ddot{d}_{bx} + a_1 \dot{d}_{bx} + a_2 \dot{d}_{bx} + a_3 \left( \ddot{d}_{ay} - \ddot{d}_{by} \right) \\
i_{ay} = a_0 \ddot{d}_{ay} + a_1 \dot{d}_{ay} + a_2 \dot{d}_{ay} + a_3 \left( \ddot{d}_{ax} - \ddot{d}_{bx} \right) \\
i_{by} = a_0 \ddot{d}_{by} + a_1 \dot{d}_{by} + a_2 \dot{d}_{by} - a_3 \left( \ddot{d}_{ax} - \ddot{d}_{bx} \right)
\end{cases}
\]

where \( a_0 = \frac{m l^2 + J_x}{4 k_x l^2} \), \( a_1 = \frac{k_{dx}}{k_x} \), \( a_2 = \frac{m l^2 - J_x}{4 k_x l^2} \) and \( a_3 = \frac{J \Omega}{4 k_x l^2} \).

Obviously, there are coupling terms in four control channels of MSM rotor in (11). For example, as shown the first function in (11), in the upper end of \( x \)-axis control channel, besides the displacement control term \( \ddot{d}_{ax} \), there are displacement terms \( \ddot{d}_{bx}, \dot{d}_{ay}, \text{ and } \dot{d}_{by} \) from other control channels. Therefore, a decoupling method should be used to realize decoupling control of MSM rotor in four control channels. For the radial rotation of MSM rotor, the gyroscopic effect related to the rotational speed introduces an additional coupling term. Based on (11), displacements of MSM rotor through the Laplace transform are

\[
\begin{bmatrix}
d_{ax}(s) \\
\dot{d}_{bx}(s) \\
d_{ay}(s) \\
\dot{d}_{by}(s)
\end{bmatrix} = G_p(s) \cdot 
\begin{bmatrix}
i_{ax}(s) \\
i_{bx}(s) \\
i_{ay}(s) \\
i_{by}(s)
\end{bmatrix}
\]

\( (12) \)
where \( G_p^{-1}(s) = \begin{bmatrix} A(s) & B(s) \\ -B(s) & A(s) \end{bmatrix} \), \( A(s) = \begin{bmatrix} a_0s^2 + a_1 & a_2s^2 \\ a_2s^2 & a_0s^2 + a_1 \end{bmatrix} \) and \( B(s) = \begin{bmatrix} -a_3s & a_3s \\ a_3s & -a_3s \end{bmatrix} \).

To realize decoupling control of MSM rotor, the following definition is introduced

\[
G_p^{-1}(s) = D(s) + W(s)
\]

where \( D(s) = \begin{bmatrix} A(s) & 0 \\ 0 & A(s) \end{bmatrix} \) and \( W(s) = \begin{bmatrix} 0 & B(s) \\ -B(s) & 0 \end{bmatrix} \). \( D(s) \) is the decoupled control matrix, and \( W(s) \) is the decoupling matrix.

3. IMC and DIMC Models of MSM Rotor

3.1. IMC Model of MSM Rotor

For the displacement control of MSM rotor in four DOFs, the block diagram of IMC model is illustrated in Fig. 6(a). \( r(s) \) is reference input, \( d(s) \) is disturbance input. \( y(s) \) is output displacement. \( G_{IMC}(s) \) is IMC model, and \( G_p(s) \) is control plant of MSM rotor. The internal model of MSM rotor is

\[
G_m(s) = G_{m+}(s) \cdot G_{m-}(s)
\]

where \( G_{m+}(s) \) is the irreversible model including pure time-delay and zeros on right half plane, and \( G_{m-}(s) \) is the reversible model.

To tune the robust stability of IMC model, the low pass filter \( G_f(s) \) with diagonal elements (\( I \) is the unit matrix) is chosen as

\[
G_f(s) = \frac{1}{(\lambda s + 1)^2} I
\]

Furthermore, the IMC model is

\[
G_{IMC}(s) = G_{m-}(s) \cdot G_f(s)
\]

Moreover, based on the IMC model in Fig. 6(b), the equivalent function of IMC model is

\[
K(s) = \frac{G_{IMC}(s)}{1 - G_{IMC}(s)G_m(s)}
\]

Therefore, the positive integer of low pass filter would make \( G_{IMC}(s) \) becomes proper, and the closed-loop system of MSM rotor could be arbitrarily robust by regulating \( \lambda \).
3.2. DIMC Model of MSM Rotor

To suppress coupling terms in (11), a matrix $W(s)$ in (13) is introduced to realize the decoupling control of MSM rotor, and then the control plant is decoupled by using a feedback loop illustrated in Fig. 6(c). $K(s)$ is the control model. The model transfer function is

$$G_D(s) = \frac{G_p(s)}{1 - G_p(s)W(s)}$$

Using the decoupling matrix $W(s)$ in (13), the decoupling model yields

$$G_D(s) = D^{-1}(s)$$

Therefore, the DIMC model could be achieved as following

$$G_{DIMC}(s) = G_D(s)D(s) = \frac{G_p(s)}{1 - G_p(s)W(s)}D(s)$$

For an originally decoupled system, this decoupling model is not necessary, so the feedback loop would be omitted, and the standard IMC model of control plant could be applied. Moreover, based on (14), the IMC could be designed for reversible model of MSM.
rotor, so the stability of IMC model and control plant could be easily testified.

3.3. Tracking Performance and Sensitivity Analysis

For the IMC model of MSM rotor in Fig. 6(b), the transfer function between reference input $r(s)$ and output displacement $y(s)$ is

$$G_{ry}(s) = \frac{y(s)}{r(s)} = \frac{K(s)G_p(s)}{1 + K(s)G_p(s)}$$  \hfill (21)

The error between reference input $r(s)$ and output displacement $y(s)$ is

$$e(s) = r(s) - y(s) = \frac{1}{1 + K(s)G_p(s)} r(s)$$  \hfill (22)

If the control plant is exact to the real plant, there is

$$e(s) = 0$$  \hfill (23)

When error approaches to zero, the IMC model could exactly track the reference input. If there is a deviation $\Delta a_i$ of the $i$th plant parameter $a_i$ from the nominal value, the tracking performance with uncertain parameter is

$$\left. \frac{G_{ry}^{-1}(s) \Delta G_{ry}(s)}{a_i^{-1} \Delta a_i} \right|_{G_p \rightarrow G_n} \rightarrow a_i G_{ry}^{-1}(s) \frac{\partial G_{ry}(s)}{\partial a_i} \text{ as } \Delta a_i \rightarrow 0$$  \hfill (24)

The sensitivity function of IMC model is

$$S(s) = \left. a_i G_{IMC}^{-1}(s) \frac{\partial G_{IMC}(s)}{\partial a_i} \right|_{G_p(s) = G_n(s)}$$  \hfill (25)

For the IMC model, substituting the IMC model $G_{IMC}(s)$ in (16) into (25), the sensitivity function of IMC model is

$$S_{IMC}(s) = a_i \left[ G_{m^{-1}}^{-1}(s) G_f(s) \right]^{-1} \left. a_i G_{m^{-1}}^{-1}(s) \frac{\partial G_{m^{-1}}^{-1}(s) G_f(s)}{\partial a_i} \right|_{G_p(s) = G_n(s)}$$  \hfill (26)

For the DIMC model, substituting the DIMC model $G_{DIMC}(s)$ in (20) into (25), the sensitivity function of DIMC model is

$$S_{DIMC}(s) = a_i \left[ \frac{\partial G_D(s)}{\partial a_i} D(s) + G_D(s) \frac{\partial D(s)}{\partial a_i} \right|_{G_p(s) = G_n(s)}$$  \hfill (27)

If $G_p(s)$ is the exact model, so...
\[
\frac{\partial G_p(s)}{\partial a_i} = 0
\]  
(28)

Differentiating (18) with respect to \(a_i\), we have

\[
\frac{\partial G_p(s)}{\partial a_i} = G_D(s) \frac{\partial W(s)}{\partial a_i} G_D(s) \bigg|_{G_p(s) = G_m(s)} = D^{-1}(s) \frac{\partial W(s)}{\partial a_i} D^{-1}(s)
\]  
(29)

Furthermore, the sensitivity function is

\[
S_{DIMC}(s) = a_i D^{-1}(s) \left[ \frac{\partial W(s)}{\partial a_i} D^{-1}(s) D(s) + \frac{\partial D(s)}{\partial a_i} \right] = a_i D^{-1}(s) \frac{\partial G_m^{-1}(s)}{\partial a_i}
\]  
(30)

Finally, the sensitivity functions of IMC and DIMC models are

\[
\begin{align*}
S_{IMC}(s) &= a_i G_m(s) \frac{\partial G_m^{-1}(s)}{\partial a_i} \\
S_{DIMC}(s) &= a_i D^{-1}(s) \frac{\partial G_m^{-1}(s)}{\partial a_i}
\end{align*}
\]  
(31)

3.4. Disturbance Rejection and Robustness

For the IMC model in Fig. 6(b), the disturbance transfer function between disturbance input \(d(s)\) and output displacement \(y(s)\) is

\[
G_{dy}^{IMC}(s) = \frac{y(s)}{d(s)} = \frac{1}{1 + K(s)G_p(s)} = \frac{1 - G_m^{-1}(s)G_f(s)G_m(s)}{1 + G_m^{-1}(s)G_f(s)[G_p(s) - G_m(s)]}
\]  
(32)

If the control plant is exact, the response magnitude of disturbance transfer function is

\[
\left| G_{dy}^{IMC}(s) \right| = \left| \frac{1}{1 + K(s)G_p(s)} \bigg|_{G_p(s) = G_m(s)} \right| = \left| 1 - G_f(s) \right|
\]  
(33)

So, the robustness is determined by filter parameter. The response magnitude increases with the filter parameter \(\lambda\), so a small value of \(\lambda\) could improve the robustness. For the high-frequency disturbance, the robustness of IMC model would be decreased, so a low-pass filter is better for IMC model.

Based on Fig. 6(c), the disturbance transfer function of DIMC model is

\[
G_{dy}^{DIMC}(s) = \frac{y(s)}{d(s)} = \frac{1}{1 + K(s)G_D(s)}
\]  
(34)

For the exact control plant, the response magnitude is
\[ |G_{dy}^{\text{DIMC}}(s)| = |1 - G_f(s)| \] (35)

Comparing (35) to (33), the DIMC model has same performance on the robustness as the IMC model, and the robustness of closed-loop system is determined by filter parameters.

4. Simulation

4.1. Sensitivity Analysis of MSM Rotor

Fig. 7. Singular values of IMC and DIMC models.

In a multi-input multi-output system, the singular values of frequency function are used to evaluate frequency responses, and the singular values are

\[ \sigma_i[G(j\omega)] = \sqrt{\delta_i[G^T(-j\omega)G(j\omega)]} \] (36)

where \( \delta_i \) is the \( i \)th eigenvalue.

The relationship between singular value and rotational speed of MSM rotor is plotted in Fig. 7. For MSM rotor at a high speed, the IMC model has the same sensitivity as the DIMC model in the low-frequency range. When the system frequency equals to the natural rotational speed of MSM rotor, the IMC model has a greater sensitivity peak than the DIMC model, so a whirling oscillation of MSM rotor occurs at a high speed. Therefore, the DIMC model is more effective on suppressing the whirling oscillation of MSM rotor at a high speed.

4.2. Tracking Performance and Robustness of MSM Rotor

To test tracking performances of two control models, a step signal of 0.1mm amplitude is used as the reference input. The response curves of IMC and DIMC models are plotted in Fig. 8(a). As shown by blue line in Fig. 8(a), for the IMC model, the maximum error between
response curve and reference input is 0.03mm. The response curve of DIMC model is shown by red line, and the maximum error is 0.02mm. Moreover, the rising time of IMC model is shorter than DIMC model. In addition, an impulse disturbance is imposed on the MSM rotor when it stably suspends at the equilibrium position, and the displacement deflection of MSM rotor is 0.02mm for both IMC and DIMC model. Therefore, the DIMC model could avoid the excessive overshoot, but the rising time and the setting time will increase. With the same filter coefficients of IMC and DIMC models, the response magnitudes for impulse disturbance are the same.

![Fig. 8. (a) Displacement curves of IMC and DIMC model, (b) response curves for impulse disturbance.](image)

Fig. 8. (a) Displacement curves of IMC and DIMC model, (b) response curves for impulse disturbance.

![Fig. 9. Response of disturbance transfer function.](image)

Fig. 9. Response of disturbance transfer function.

In addition, with different values of $\lambda$, the response curves of MSM rotor for an impulse disturbance are plotted in Fig. 8(b). The displacement curve is shown by magenta line when $\lambda=10$. The error between reference input and response curve is 0.025mm and the settling time is 0.86s. In the meanwhile, the response curve for an impulse disturbance at $\lambda=0.1$ is plotted by
blue line. The error is 0.016mm and the settling time is 0.52s. Therefore, the robust stability of MSM rotor is improved with a great value of $\lambda$, but the tracking lag is enlarged.

Moreover, response curves of disturbance transfer function in (33) with different values of $\lambda$ are plotted in Fig. 9. The response magnitude at $\lambda=0.1$ shown by the blue line is greater than that at $\lambda=1$, so the IMC and DIMC models are both sensitive to the disturbance, but the cut-off frequency of disturbance transfer function is decreased with the value of $\lambda$. So, the disturbance could affect the robustness of MSM rotor, but a great value of $\lambda$ could reduce the frequency range of disturbance.

The simulation results indicate that the DIMC model has better performance on reducing overshoot and oscillation but increases the rising time and the setting time.

4.3. Rotation Performance of MSM Rotor with IMC and DIMC Model

![Response curves of disturbance transfer function](image)

Fig. 10. (a) Suspension process of MSM rotor with IMC model, (b) suspension process of MSM rotor with DIMC model, (c) dynamic displacements of MSM rotor with IMC model at 6000rpm, (d) dynamic displacements of MSM rotor with DIMC model at 6000rpm.
The suspension process of MSM rotor with IMC model is plotted in Fig. 10(a). The magnetic force of upper radial AMB at suspends the MSM rotor at the equilibrium position at \( t=1s \). At that instant, there are deflections on other three displacement terms. An impulse disturbance acts on the upper end of MSM rotor when \( t=3s \), the displacement \( d_{ux} \) has 0.07mm deflection from the equilibrium position, and a deflection 0.02mm occurs on other three displacement control channels. For the DIMC model, the suspension process of MSM rotor is plotted in Fig. 10(b). When an impulse disturbance is imposed on upper end of MSM rotor at \( t=3s \), the displacement \( d_{ux} \) has 0.08mm deflection, and the displacement \( d_{lx} \) has a deflection about 0.03mm, but displacements \( d_{uy} \) and \( d_{ly} \) still maintain at the balanced state.

Furthermore, dynamic displacements of MSM rotor with IMC model at 6000rpm are plotted in Fig. 10(c). The stable displacement amplitude of MSM rotor is 0.015mm. When an impulse disturbance is imposed on the upper end of \( x \)-axis, deflections of \( d_{ux} \) and \( d_{lx} \) are both 0.05mm, and deflections of \( d_{uy} \) and \( d_{ly} \) are both 0.04mm. The dynamic displacements of MSM rotor with the DIMC model are plotted in Fig. 10(d) The displacement \( d_{uy} \) and \( d_{ly} \) remain stable, but deflections of \( d_{ux} \) and \( d_{lx} \) both are 0.06mm.

Therefore, the DIMC model reduces the coupling effect when the MSM rotor works at both static suspension and dynamic rotation states, and deflections of MSM rotor in other displacement channels are avoidable by applying the DIMC model.

5. Experiment

5.1. Experimental Setup

The experiment setup is illustrated in Fig. 11. It consists of a mechanical system and a signal processing system. The mechanical system has two pairs of radial AMBs, one pair of axial AMBs, a FW rotor and a PMSM. The power supply system with 28V and 2A is used to drive axial and radial AMBs. The vacuum pump reduces the wind drag when the MSM rotor works at a high speed. For the signal processing system, the eddy current displacement sensors measure displacement deflections of MSM rotor. The data acquisition (DAQ) board collects and feeds back displacement deflections to the main control unit (MCU) based on a digital signal processor (DSP) chip and a field programmable gate array (FPGA) chip. The industrial personal computer (IPC) timely monitors working statuses of experimental setup such as rotational speed and dynamic displacements. The major parameters are listed in TABLE. I.
Fig. 11. The experimental setup of MSM rotor.

Table I. Parameters of experimental setup.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m$</td>
<td>150kg</td>
<td>$k_{ix}$</td>
<td>620N·A⁻¹</td>
</tr>
<tr>
<td>$J_x$</td>
<td>1.24kg·m²</td>
<td>$k_{dx}$</td>
<td>-1700N·mm⁻¹</td>
</tr>
<tr>
<td>$J_y$</td>
<td>1.24kg·m²</td>
<td>$l$</td>
<td>0.48mm</td>
</tr>
<tr>
<td>$J_z$</td>
<td>0.67kg·m²</td>
<td>$k_a$</td>
<td>0.2A·V⁻¹</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>0.001 Ω</td>
<td>$\Omega_1$</td>
<td>6000rpm</td>
</tr>
<tr>
<td>$k_s$</td>
<td>3.3V/mm</td>
<td>$\Omega_2$</td>
<td>10000rpm</td>
</tr>
</tbody>
</table>

5.2. Sensitive Analysis of MSM Rotor

Fig. 12. The sensitivity of displacement stiffness and current stiffness.
According to (9), relationships among current stiffness, displacement stiffness and bias displacement are illustrated in Fig. 12. The nominal bias displacement is 1mm, the nominal value of radial current stiffness shown by red line is 620N/A and the nominal value of radial displacement stiffness marked by blue line is -1700N/mm. When the bias displacement deflects 0.1mm from the nominal position, the deflection value of radial current stiffness is 90N/A, and deflection of radial displacement stiffness is 360N/mm. Therefore, for the MSM rotor with great self-weight, the displacement stiffness and the current stiffness are sensitive to the initial position affected by the self-weight.

Moreover, an impulse disturbance (10% of self-weight) is imposed on the lower end of MSM rotor at the equilibrium state. Fig. 13 shows the displacement deflections of MSM rotor with different values of $\lambda$. At $\lambda=1$, the response magnitude for impulse disturbance is 0.02mm as shown by blue line. The response magnitude declines to 0.085mm when $\lambda$ decreases to 0.001. So, the disturbance sensitivity is suppressed by increasing the value of $\lambda$.

5.3. Suspension Performance and Anti-Disturbance

Firstly, a step signal is chosen as the reference input to realize MSM rotor’s suspension at the equilibrium position, and then an impulse disturbance is added on the lower end of MSM rotor. The suspension traces of MSM rotor with IMC model are shown in Fig. 14(a). The MSM rotor is forced to suspend at the equilibrium position in $x$-axis at $t=5$s, so displacements $d_{ux}$ and $d_{lx}$ both equal to zero. At the same instant, displacements $d_{uy}$ and $d_{ly}$ have a deflection 0.07mm because of the coupling effect among four displacement channels. An impulse disturbance is imposed on the lower end of $x$-axis (displacement $d_{lx}$) at $t=5.5$s, it has a
response magnitude 0.08mm. The response magnitude of $d_{ux}$ is 0.04mm. Owing to the coupling effect, displacements $d_{ly}$ and $d_{uy}$ have respective deflection magnitudes of 0.07mm and 0.03mm. Moreover, the suspension traces of MSM rotor with the DIMC model are shown in Fig. 14(b). The displacement deflections of $d_{ly}$ and $d_{uy}$ are both 0.06mm when the MSM rotor is forced to suspend at the equilibrium position in $x$-axis at $t=4s$. The response magnitude of $d_{lx}$ due to the impulse disturbance is 0.07mm while the displacement deflection of $d_{ly}$ is 0.05mm. So, as listed in TABLE. II, the DIMC model has a 28.6% reduction in $d_{ly}$ and 33.3% reduction in $d_{uy}$ compared to the IMC model.

Moreover, the suspension traces of MSM rotor with the DIMC model are shown in Fig. 14(b). The displacement deflections of $d_{ly}$ and $d_{uy}$ are both 0.06mm when the MSM rotor is forced to suspend at the equilibrium position in $x$-axis at $t=4s$. The response magnitude of $d_{lx}$ due to the impulse disturbance is 0.07mm while the displacement deflection of $d_{ly}$ is 0.05mm. So, as listed in TABLE. II, the DIMC model has a 28.6% reduction in $d_{ly}$ and 33.3% reduction in $d_{uy}$ compared to the IMC model.

![Fig. 14.](image)

**Fig. 14.** (a) Suspension traces of MSM rotor with IMC model, (b) suspension traces of MSM rotor with DIMC model, (c) dynamic displacement of MSM rotor with IMC model during speed regulation, (b) dynamic displacement of MSM rotor with DIMC model during speed regulation.

The dynamic displacements of IMC and DIMC models during speed regulation are plotted. The speed curve is plotted by green line when the MSM rotor is accelerated from zero to 5000rpm at $t=118s$ and deaccelerated to 0rpm at $t=418s$. The displacements of MSM rotor have deflections at the start moment of acceleration and deceleration. The maximum
displacement deflection of IMC model is 0.15mm during acceleration and that during deceleration is 0.18mm in Fig. 14(c). Moreover, the DIMC model has maximum displacement deflection 0.08mm during acceleration and that during deceleration is 0.09mm in Fig. 14(d). Therefore, the DIMC model has a reduction of displacement deflection 50% in comparison with the IMC model.

The dynamic displacements of MSM rotor with the IMC model are plotted in Fig. 15(a) when the speed is 6000rpm. The stable displacement of MSM rotor is 0.025mm. When an impulse disturbance is imposed on lower end of x-axis, the response magnitude of $d_{lx}$ is 0.08mm, and that of $d_{ax}$ is 0.03mm. Along y-axis, the response amplitude of $d_{ly}$ is 0.04mm, and that of $d_{ay}$ is 0.03mm. Fig. 15(b) displays dynamic displacements of MSM rotor with using the DIMC model. The stable displacement of MSM rotor is 0.015mm. The deflection of $d_{lx}$ is 0.05mm, and that of $d_{ax}$ is 0.03mm. At the same instant, the response amplitude of $d_{ly}$ for impulse disturbance is 0.035mm. Consequently, based on the comparison in TABLE. III, the DIMC model has 12.5% reduction in deflection of $d_{ly}$ and 16.7% reduction in deflection of $d_{ay}$ compared with the IMC model.

The dynamic displacements of IMC model are shown in Fig. 15(c) when the speed of MSM rotor is 10000rpm. The stable amplitude of MSM rotor is 0.015mm. When an impulse disturbance is imposed on the lower end of MSM rotor in x-axis, the deflection of $d_{lx}$ for impulse disturbance is 0.09mm, and that of $d_{ax}$ is 0.03mm. For the disturbance response in y-axis, the deflection of $d_{ly}$ is 0.08mm, and that of $d_{ay}$ is 0.03mm. The dynamic displacements of MSM rotor with applying DIMC model are shown in Fig. 15(d). The stable suspension displacement of MSM rotor is 0.01mm. When the disturbance is applied on lower end of x-axis, the response amplitude of $d_{lx}$ for impulse disturbance is 0.07mm, and that of $d_{ax}$ is 0.03mm. The response amplitude of $d_{ly}$ for impulse disturbance is 0.07mm, and that of $d_{ay}$ is 0.02mm. Therefore, the DIMC model has a 12.5% deflection reduction in $d_{ly}$ and 33.3% reduction in $d_{ay}$ in comparison with the IMC model.
Fig. 15. (a) Dynamic displacements of MSM rotor with IMC model at 6000rpm, (b) dynamic displacements of MSM rotor with DIMC model at 6000rpm, (c) dynamic displacements of MSM rotor with IMC model at 10000rpm, (d) dynamic displacements of MSM rotor with DIMC model at 10000rpm.

| TABLE. II. COMPARISON ($d_{ly}$) of IMC and DIMC MODEL |
|---------------------------------|---------|---------|-----------|
| State of MSM                   | IMC model | DIMC model | Reduction |
| Suspension                     | 0.07mm   | 0.06mm   | 14.3%     |
| Static disturbance             | 0.07mm   | 0.05mm   | 28.6%     |
| 6000rpm                       | 0.04mm   | 0.035mm  | 12.5%     |
| 10000rpm                      | 0.08mm   | 0.07mm   | 12.5%     |

| TABLE. III. COMPARISON ($d_{uy}$) of IMC and DIMC MODEL |
|---------------------------------|---------|---------|-----------|
| State of MSM                   | IMC model | DIMC model | Reduction |
| Suspension                     | 0.07mm   | 0.06mm   | 14.3%     |
| Static disturbance             | 0.03mm   | 0.02mm   | 33.3%     |
| 6000rpm                       | 0.03mm   | 0.025mm  | 16.7%     |
| 10000rpm                      | 0.03mm   | 0.02mm   | 33.3%     |
6. Conclusion

In static suspension state, the robustness of MSM rotor is improved by tuning the parameters of IMC model. Moreover, the DIMC model is applied to realize decoupling control in four DOFs, and displacement deflections of MSM rotor caused by the coupling effect are mitigated. In dynamical rotation state, dynamic displacements of MSM rotor are mitigated by both IMC and DIMC models. Although the displacement overshoot of MSM rotor with the IMC model still exists, the IMC model could improve the robustness of MSM rotor, and the DIMC model suppresses the coupling effect among different control channels.

Funding Acknowledgement

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of Interest Statement

The authors declare no conflict of interest in preparing this article.

References


Garcia CE and Morari M. (1982) Internal model control. A unifying review and some new
Mechatronics 28: 46-54.