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ENERGY STABILITY AND ERROR ESTIMATES OF EXPONENTIAL TIME
DIFFERENCING SCHEMES FOR THE EPITAXIAL GROWTH MODEL
WITHOUT SLOPE SELECTION

LILI JU, XIAO LI, ZHONGHUA QIAO, AND HUI ZHANG

ABSTRACT. In this paper, we propose a class of exponential time differencing (ETD) schemes for
solving the epitaxial growth model without slope selection. A linear convex splitting is first ap-
plied to the energy functional of the model, and then Fourier collocation and ETD-based multistep
approximations are used respectively for spatial discretization and time integration of the corre-
sponding gradient flow equation. Energy stabilities and error estimates of the first and second
order ETD schemes are rigorously established in the fully discrete sense. We also numerically
demonstrate the accuracy of the proposed schemes and simulate the coarsening dynamics with
small diffusion coefficients. The results show the logarithm law for the energy decay and the power
laws for growth of the surface roughness and the mound width, which are consistent with the
existing theories in the literature.

1. INTRODUCTION

Let us consider the two-dimensional model of epitaxial thin film growth without slope selection
taking on the form [11]
W o (T
ot 1+ |Vul?
where Q = (zg, 2o+ X) X (yo, yo+Y) is a rectangular domain, € > 0 is a constant parameter, and u =
u(x, t) is the scaled height function of the thin film subject to the periodic boundary condition. This
model (1.1) describes the coarsening processes arising from many applications in physics, chemistry
and biology [25], in which the nonlinear second order term models the Ehrlich-Schwoebel effect and
the linear fourth order term the surface diffusion. The equation is mass conservative along the time
evolution due to

(1.2) /Qu(a:,t)dm:/ﬂu(a:,O)dw, t>0

under the periodic boundary condition.
The equation (1.1) in fact defines a gradient flow with respect to the L?(£2) inner product of the
energy functional

) — A%, xcQ, tec(0,T),

2
(1.3) B(u) = /Q (- %1n<1+ Vul?) + 5 1Auf?) da.
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2 LILI JU, XIAO LI, ZHONGHUA QIAO, AND HUI ZHANG

The logarithmic term —3In(1 + |y|?), y € R? is bounded above by zero but unbounded below.
Moreover, it has no relative minima, which implies that there are no energetically favored values
for |Vu|. From a physical point of view, it means that there is no slope selection mechanism in the
epitaxial growth dynamics. Some detailed discussions on this issue could be found in [17, 18] and
the references cited therein. The well-posedness of the initial-boundary-value problem involving the
equation (1.1) was studied in [17] using the perturbation analysis method.

The physically interesting process is the coarsening dynamics occurring on a very long time scale
for spatially large systems, i.e., small €. For instance, Li and Liu [18] have proved that the energy
is bounded below by O(—Int) for large time ¢ and the global minimum energy scales as O(lne)
in the limit € — 0. Therefore, numerical simulations for the coarsening dynamics of large systems
require the long time stability and accuracy of the numerical methods. In particular, temporally and
spatially high order schemes with unconditional stability are highly demanded in term of efficiency
and effectiveness.

Energy stability has been investigated recently for numerical schemes of the thin film growth
models [23, 24] and other phase field models [6, 10]. Wang et al. [30] derived first order (in time)
convex splitting schemes for epitaxial growth models under the convex splitting framework exploited
by Eyre [9], and Shen et al. [27] constructed second order (in time) schemes based on the same convex
splitting approach. A linear iteration algorithm was further developed for the second order energy
stable scheme for the model (1.1) in [3]. We note that these numerical schemes are nonlinear although
unconditionally energy stable. A linear convex splitting scheme was developed for the model (1.1)
by Chen et al. [2], and their main contribution lies in an alternate convex splitting of the Ehrlich-
Schwoebel part in (1.3). The convex splitting technique also has been used extensively on different
phase field models, e.g., the Cahn-Hilliard equations [20, 33], the phase field crystal model [31], the
diffuse interface model with Peng-Robinson equation of state [21], etc. On the other hand, second
order nonlinear and linearized Crank-Nicolson type difference schemes were derived by Qiao et al.
[22] for the model (1.1) where the unconditional energy stability is achieved with respect to a modified
energy functional by introducing an auxiliary variable. For the epitaxial growth model with slope
selection, Xu and Tang [32] proposed a first order linear implicit-explicit scheme by adding an order
O(At) stabilization term of the form AA(u"*! —u™), where A depends nonlinearly on the numerical
solutions. In other words, it implicitly uses the L>°-bound assumption on |Vu™| in order to make A
a controllable constant. In a recent work [19], these technical restrictions were removed and a more
reasonable stability theory was established. The linear scheme presented in [2] was essentially a first
order stabilized implicit-explicit scheme with the stabilizer equal to one. The similar approaches
were also applied on the Allen-Cahn and Cahn-Hilliard equations [28]. Overall, there exist very few
work devoted to development of temporally high order schemes with unconditional energy stability
for the model (1.1).

In this paper, we will present fully discrete numerical schemes for solving the model (1.1), that
uses the Fourier spectral collocation approximation for spatial discretization in combination with
exponential time differencing (ETD) [1, 4, 16] and explicit multistep approximations for time inte-
gration. These schemes can be efficiently implemented via the fast Fourier transform (FFT). The
ETD-based schemes often involve exact integration of the linear part of the target equation followed
by an explicit approximation of the temporal integral of the nonlinear term, and can achieve high
accuracy, stability and preservation of the exponential behavior of the system. Hochbruck and Os-
termann provided in [13] a nice review on the exponential integrator based methods, including the
ETD ones. Du and Zhu investigated the linear stabilities of some ETD schemes [7] and modified
ETD schemes [8]. Ju et al. developed stable and compact ETD schemes and their fast implemen-
tations for semilinear second and fourth order parabolic equations [14, 15, 34] by utilizing suitable
linear splitting techniques. However, apart from numerical implementations, theoretical analysis on
stability and convergence of the ETD schemes for the phase field models are still highly desired.

The rest of the paper is organized as follows. In Section 2, we first present a linear convex splitting
of the energy functional (1.3), and then based on this splitting develop a class of fully discrete ETD
numerical schemes, in which Fourier spectral collocation is used for spatial discretization and explicit
multistep approximations for time integration. The energy stabilities of the first and second order (in
time) ETD schemes are proved in Section 3, followed by error estimates rigorously derived in Section
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4. In Section 5, we numerically demonstrate the temporal and spatial accuracy of the proposed ETD
schemes and simulate the coarsening dynamics with small € to verify the scaling laws obtained at
the theoretical level. Some concluding remarks are given in Section 6.

2. FULLY DISCRETE EXPONENTIAL TIME DIFFERENCING SCHEMES

It is well known [7] that a suitable linear operator splitting can improve the stability. Motivated
partly by the work of [2], in this section we first provide a sufficient and necessary condition, in-
dependent on the unknown solution u, on the existence of a linear convex splitting of the energy
functional (1.3). Then, we discretize the spatial domain and the time interval, respectively, to design
fully discrete ETD numerical schemes for (1.3).

2.1. Linear convex splitting. We try to find a linear convex splitting of the energy (1.3) as
E(u) = E.(u) — E.(u) with

K g2 K 1
2.1 E.(u) = = |Vul* + —|Aul? E :/ = |Vul* + = In(1 2
e B = [ (§IVuP+ SIA) de, B = [ (F190R + 01+ [90P)) o,

where k > 0 is expected to be as small as possible. E.(u) is obviously convex as long as x > 0, but
the convexity of E.(u) depends on the convexity of the function

1
G(a,b) = g(cﬂ +0)+ 5n(l+a® +8°), abER.

Proposition 2.1. The function G(a,b) is conver in R? if and only if k >

| =

Proof. Simple calculations give us the Hessian matrix

1 d (CL2 b2) —2ab
9 - 11 )
V<G(a,b) = (1 + a2+ b2)2 < —2ab daa(a?,b?)

with
di1(p,q) = k(p+q@)® + (26 — Dp+ 26+ L)g+ £ + 1,
dos(p,q) = k(p+)*+ 26+ )p+ (26 — 1)g+ K + 1.

The convexity of G is thus equivalent to the positive semi-definiteness of the matrix V2@, that is,

(2.2a) di1(p,q) = 0,
(2.2b) d22(p,q) = 0,
(2.2¢) d11(p, q)d22(p, q) — 4pgq = 0,

where p = a? and ¢ = b?. Next we prove that (2.2) holds for any p,q > 0 if and only if x > We

oo —

rewrite di1(p, q) as
di1(p,q) = k> + (2kp + 26+ 1)g + kp> + (26 — Dp+ K + 1.

Since 04d11(p, q) > 0 for any x > 0 and p, ¢ > 0, the inequality di1(p,q) > 0 holds for any p,q > 0 if
and only if di1(p,0) > 0 for any p > 0, which is equivalent to

2k —1 >0 2k — 1 <
2K ’ or 2K ’
A(du) =1-8k S 07 du(0,0) Z 0,

1
and then leads to k > 3 The analysis for the inequality (2.2b) is similar. We next show that the
1
inequality (2.2¢) holds for any p,q > 0 when k > 3 It is not hard to find

di1(p,q)da2(p,q) —4pg = (1 +p+ q)[1 + k(1 4+ p+ q)]do(p, q)
with
do(p,q) = kp* +26(14+q) = lp+ (1 +q)* —q+1.

1
If k > 3 then A(dg) = 1—8k < 0, which implies that dy1(p, q)da2(p, ¢) —4pg > 0 for any p,q > 0. O

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



4 LILI JU, XIAO LI, ZHONGHUA QIAO, AND HUI ZHANG

The above convex splitting of the energy (1.3) motivates us to apply ETD schemes to the split
form of the equation (1.1) with a splitting constant x > %. To this end, we rewrite the equation

(1.1) as

(2.3) Ou

i —(e2A% — kA)u — V - <W> — kAu.

1+ |Vul?

Usually, larger x leads to more stable numerical schemes, but larger splitting errors.

2.2. Spectral collocation approximations for spatial discretization. Let N, and N, be two
even numbers. The N, x N, mesh Qx of the domain § is a set of nodes (z;,y;) with z; = x¢ + ih,,

Y;j = Yo+ jhy, 1 <i < N, 1<]<N where h, —N—andh —NLaretheumformmeshsmesm

each dimension. All of the two-dimensional periodic grid functions “defined on Q A are denoted by
MV We define the index sets

v ={(6,§) € Z*|1 <i < N,, 1<j <N},
0 N, N, N, N,
= Ll —— < <7I s <l< ¥l

For a function f € MY, the 2-D discrete Fourier transform f = Pf is defined componentwise
[26, 29] by

fkl Z fijexp ( k ) exp ( — izl%yj), (k1) e jN.
(i,7)€In

The function f can be reconstructed via the corresponding inverse transform f = P! f with com-
ponents given by

N 2k 2l .
ZA friexp (17%) €xXp (17%), (i,7) € I
(kD) eTn

Let MY = {Pf|f e MV} and define the operators D, and ﬁ on MV as
2kmi

(ﬁmf)kz = ( )fkla (ﬁyf)kl = (2lm)sz, (k1) € I

then the Fourier spectral approximations to the first and second order partial derivatives can be
represented as

D,=P'D,P, D,=P'D,P, D?=P7'D2P, D?=P 'DP.
For any f,g € MN, f = (f1, A7 € MY x MY and g = (¢%,9*)7 € MY x M| the discrete

gradient, divergence and Laplace operators are given respectively by

Dy
VNfZ(D j:), Vn - f =Dof'+Dyf? Ayf=Dif +D;f,
Y
and the discrete L? inner product (-, ), and L? norm || - || by
(f,90n =hahy D> figigs  Ifllv =V D

(4,0)€JIn

(F.@)n =hahy > (flhali+ 1302, flv=V(F Fx

(4,5) €N

It is easy to show the following proposition.

Proposition 2.2. For any functions f,g € MN and g € MN x MN | we have the discrete integra-
tion by parts formulas

(fL,VN-g)In = =(Vaf, 9w, (L, ANgN = —(VN [, Vg v = (Anf 9)n

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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By noticing the property (1.2), without loss of generality, we assume that the mean of u is zero
and only consider the zero-mean grid functions coming from the (N, N, — 1)-dimensional space

o ={ve MV (v,1)x =0} = {v e MY |dg =0}.

A function u € MY could always be mapped into M{)\[ by the projection

u, 1) nr

— 1(
U U — ——
XY

Let A%, bS the limitation of A on M{)v.
Define Ly = EQAJQ\L— kA and its limitation on M, Ly = e2(A%,)? — kAY,. It is obvious from
Proposition 2.2 that Ly is symmetric (or self-adjoint) on M¥ | i.e.,
(zNu,v)N = (u, sz)N, Vu,ve MV,
Moreover, for any u € Mév , we have
(Lyu,u)n = 2| Anullis + & Vaula >0, (Lyu,u)y =0 <= u=0,

which means that the operator Ly, is symmetric positive definite (thus invertible) on ./\/l{)\/ . Since
Ly is a linear operator on the finite-dimensional linear space M{J\f , the following properties of matrix
functions could be utilized on L /.

Lemma 2.3 ([12]). Let f be defined on the spectrum of M € C?*?, that is, the values
fP0),  0<j<n—1,1<i<d

exist, where {)\i}le are the eigenvalues of M, and n; is the order of the largest Jordan block where
Ai appears. Then
(1) f(M) commutes with M ;

(2) f(MT) = f(M)";

(3) the ezgenvalues of f( ) are f(N), 1 <i<d;

(4) f(P7YMP) = P~1f(M)P for any nonsingular matriz P € C4*4;

(5) for any P,Q ¢ (CdXd (PHQ)t — oPteRt — ¢QtePt if and only if PQ = QP;

(6) ( ]\/It) MeMt — eMtM.
Remark 2.4. We know that real symmetric matrices are diagonalizable, i.e., each Jordan block is of
order 1. Thus, a function f is defined on the spectrum of a symmetric matrix M € R4*? as long as

the values {f()\;) : 1 <i < d} exist.

The space-discrete scheme for the equation (2.3) is to find a function % : [0, 7] — M such that

du
e Ly — fa(@), te(0,T
o = Ly~ f(@), e (0.7,
ﬂ(O) = Ug,
N - . ~ VN@: ~ .
where ug € My’ is given and fa(4) = Vi - | —=——=5 | + kAxu. According to Lemma 2.3,
1+ |Vaul?
acting the operator e/~* on both sides of (2.4) leads to
d(ef~ty _
(2.5) % = —e™V far(@).

Given a positive integer N;, we divide the time interval by ¢, = nAt, 0 < n < N; with a uniform
time step At = Nlt Then integrating the equation (2.5) from ¢, to ¢,41 gives us

At
(2.6) W(tnsr) = e BVA(t,) — / e VBT Gty + 7)) dr
0

The equation (2.6) is equivalent to (2.4) and will play a key role in designing ETD schemes for time
stepping.

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



6 LILI JU, XIAO LI, ZHONGHUA QIAO, AND HUI ZHANG

Remark 2.5. If we approximate the integration using the left-rectangle quadrature and the expo-
nential by elVA! &~ [ + LAt in (2.6), then we obtain

(I + Ly At)u(tnir) = ultn) — At far(u(tn)),
which leads to the first order stabilized semi-implicit (SSI1) scheme for solving (2.3)

un—i—l _ un

(2.7) AL = —LNUn+1 = fa(u").

In particular, the convex splitting scheme proposed in [2] is identical to (2.7) with x = 1.

2.3. ETD multistep approximations for time integration. We take an explicit multistep
approach to evaluate the time integral on the right-hand-side of (2.6). We use the Lagrange
polynomial interpolation of degree r based on the nodes {tp—_r,tn_rt1,...,tn} to approximate
Fn(tn +7) = far(u(ty, + 7)). Define

Po(1) =Y Fx(ta—s)lrs(r), 7€ [-rAt Al
s=0

where {{, (7)}5i_, are the standard Lagrange basis functions associated with the nodes {t,—s}5_0.

We have the interpolation error Fj/(t,+7)—P,.(7) = O(At" 1) if the derivative Fﬁ’,ﬂﬂ) (t) is bounded.
The integral in (2.6) can be approximated by

At T
/ BN bty 7)) dr 2 S 8o (Ea) i (fs),
0 s=0

where
At
Srala) = [ (e @, aew
0
Then we obtain the fully discrete ETD multistep (ETDMs) scheme for solving (2.3) as

(2.8) u'th = eIV AT NG, (L) ().
s=0

This scheme is expected to be (r + 1)-th order accurate in time. We have

Ly =eX(D2 + D)2 — w(D2 + D2) = P~ (62(135 + D2)% — k(D2 + ﬁj))P — P I\P,
where the operator Ly = e2(D2 + ﬁi)z - Ii(ﬁg + ﬁg) can be expressed as

(Ia Pkt = N, (k1) € Ty
for any f € MV, where {Mt| (k1) € Jx} are the eigenvalues of Ly (also Ly), that is,
4k3 % 427N\ 2 4k*m? 427
ot yr) et e

Noting the definition Ly = L N MY and the fact that all of the eigenvectors belonging to the non-

(2.9) At = 52( ) > 0.

zero eigenvalues of L A are exactly the eigenvectors of Ly, we know that the eigenvalues of Ly, are
{Xer | (k,1) € Jn \ (0,0)}. Denoting LY, = PLyP~!, we finally obtain an implementation formula
for the ETD multistep scheme (2.8) as

W = Prle TRAPY = 3T LS, (L) P (")
s=0

= Pt (e APy Z S (LR PIn (™) ).
s=0

where

(e FAAfy = oA (S, (E8) it = Srs (it fats (k,1) € Jx \ (0,0)

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



ENERGY STABILITY AND ERROR ESTIMATES FOR EPITAXIAL GROWTH MODEL 7

for any f e MV with foo = 0. The operators P and P~! can be implemented by the 2-D fast
Fourier transform and the corresponding inverse transform, respectively. Therefore, the overall
computational complexity is O(N?log, N) per time step where N = max{N,, N,}.

We also specially remark that the operator S, s(Lx) does not depend on time in the case of
uniform time partition. Since

r

u A 0
Ens(’]’) _ H qztt‘f'T H CI+ Za;,sep,

q=0,q#s —O,q;«é‘; p=0

where 0 = Alt and {ay®})_ are the coefficients of the polynomial £, s(7), we have
T OéT s

At r
Srs(a) = Z (AZ;) / TPe~ (A=) qr = Za;7s¢p(a), 0<s<r,

p=0 p=0
where

1 At A
Ppla) = (At)p/o e AT dr, 0<p<r

can be calculated by the recurrence formula

do(a) = a”H (1 =2, gp(a) = a7 (1= odpi(a), a0,
At
Ppla) = PR a=0.

For the cases r =0 and r = 1, we have

boo(r) =1, Llio(r)=1+ é,

and the operators S, s(Lar) can be expressed as follows:

So.0(Ln) = do(Lw),  Sro(Ln) = do(Ln) + d1(Ly), S1a(Ln) = —é1(Lw),

T

51,1(7') = _E’

where
bo(Ln) = Lyt (I — ™80 6y (L) = L (I = (L At) ™1 (I — e~ bwat)),
Thus we obtain the first order ETD multistep scheme (ETD1) as
(2.10) u' T = e TN A — o (L) far(u”)
= P [e P PU — Go(LR) P fn(u™)]
and the second order ETD multistep scheme (ETDMs2) as
(2.11) utt = e IR — o (L) far(u") = $1 (L) (far (™) = far(u™ 1))
= P e PVAP — go(L) Phn (") = 61 (L) P (") = S (™).

Proposition 2.6 (Discrete mass conservation). The ETD1 scheme (2.10) and the ETDMs2 scheme
(2.11) are mass conservative in the discrete sense, i.e., (u"tt —u™ 1) =0 for 0 <n < N; — 1.

Proof. We just take care of the ETD1 scheme, and the other case is similar. We know from (2.10)
that

(2.12) Uttt — gt = (1 — e IV Ay — LT — e EVAY) frr (u™).
Define g1(a) = 1 — e for a € R and an operator By = ¢;(Ly) = I — e E~At Since Ly is

symmetric positive definite and 0 < g1(a) < 1 for any a > 0, we know from Lemma 2.3 that B; is
also symmetric positive definite and commutes with L and fol. Then we obtain from (2.12) that

u"t —u" = —Biu™ — L' Bifa(u™) = —Bi(u™ + Ly far(u™)).

Taking the discrete L? inner product of the above with the constant v = 1 and using the symmetry
of By, we obtain

(unJrl - unv 1)./\/ = _(un + LX/'lfN(un)v Blv)N

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



8 LILI JU, XIAO LI, ZHONGHUA QIAO, AND HUI ZHANG

Note that 1 1
By =T—e VA = [ At - E(LNAt)2 - 6(LNAt)3 +oe

therefore B is essentially a differential operator, and thus Byv = 0, which completes the proof. [
3. ENERGY STABILITY

For a linear symmetric positive definite operator A : MY — MY we denote by o(A) the
set of all the eigenvalues of A, and define the norm of A as the spectrum radius of A, that is,
Al = max{|A| : A € o(A)}. It obviously holds

lMolln < JAllIollar, Vo e MY,

The discrete energy functional corresponding to the continuous one E(u) can be defined as

(5.) B = (- w4 wau) 1)+ S lavuli
for any u € M.
Lemma 3.1. For any v,w € M{J\/, it holds that
En(v) — Exn(w) < (Lavv + fv(w), v — w)n.
Proof. According to Proposition 2.1, a convex splitting of the discrete energy (3.1) can be given by
Ex(u) = Ex(u) — Epe(u) with

2
K 9
Bxe(u) = 5| Vacul + SlAvuli,

Exolw) = S19aculle + (3101 + [Vauf?),1)
which are the corresponding discrete versions of F, and F., respectively. Using the convexity of
Ey .. and Epn ., we have the following inequality (see [20, Lemma 3.9] or [31, Theorem 3.5])
En () — Ex(w) < (04 En,c(V) — S En e (W), v — w)pr.
Some careful calculations give the variational derivatives
5uEN,c(U) = L, 6uE/\f}e(w) = —fa(w),

which completes the proof. O
Theorem 3.2. The approzimate solution produced by the ETD1 scheme (2.10) satisfies the energy
inequality

(3.2) En(u"*!) < Ex(u")

for any time step size At >0, i.e., the ETD1 scheme (2.10) is unconditionally energy stable.
Proof. Recall the ETD1 scheme (2.10), that is,

utl = g LwAtyn _ folBlfN(u”).
Thus we have

Inv@™) = —BflLN(u"'Irl — e_LNAtu")

= — B Ly (u™t — " 4 (I — e LAty

= B 'Ly (u™™ —u") — By 'Ly Biu™

= By Ly (u™ — ™) — Lyu™
Define go(a) = (g%w) —1)a for a # 0 and an operator By = g2(Ly) = (B! —I)Ly. For any a > 0,

we have 0 < g;(a) < 1 and thus ga(a) > 0. Therefore, (B;' — I)Lys is symmetric positive definite.
Setting v = ™! and w = ¥ in Lemma 3.1, we obtain

(3.3) En(u"™) — Ex(u™) < (Lyu™ + far(u™),ut — u”)N

= ( - BflL,\/(u”'*'1 —u™) + Ly (u™ — ™), un T — u")N

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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_ _(BQ(un-‘rl _ un)’ un-‘rl _ un)N

Proposition 2.6 tells us that u"*t! —u" € M{)v, so the energy inequality (3.2) comes from (3.3) and
the fact that B, is positive definite. O

Corollary 3.3. For the numerical solution {u™})\* | produced by the ETDI1 scheme (2.10) with the
starting data u®, there exists a constant C' depending only on e and |Q| such that

2
max |[[Axu"||lx < =V Ex(ul) + C.

1<n<N, €
Proof. For any y > 0 and « > 0, it holds
In(l+y)+ma=n(l+(ay+a—-1)) <ay+a-—1,

namely,
In(l+y)<ay—lna+a-—1,
then we obtain

a 1 g?
En(u") 2 =S Vsl - (- o+~ 11y + Sl Avu}

Since u™ € M{)\/ , we have the following discrete Poincaré inequality:

e IV

) n2e?
Choosing o =

1
and denoting C,, = 5(— Ina+ a — 1), we derive

2
n € n
Ex(u®) = TlAyuR - CaXY.

Using Theorem 3.2, we have Exr(u™) < Ex(u™1) < -+ < Ep(u), then

[ V)

€ n
T IAvu" R < Ex(u”) + CaXY,

which completes the proof. g

Remark 3.4. We know from Corollary 3.3 that the numerical solution to the ETD1 scheme (2.10)
is uniformly bounded in time in the discrete H? sense. Such uniform bounds were also achieved for
the nonlinear and linear convex splitting schemes given in [2, 30]. By comparison, in some other
related works (see, e.g., [22]), the energy stability is considered with respect to an energy involved
artificial variables. As a result, although the energy stability is obtained at the numerical level, a
uniform in time H? bound of the numerical solution could hardly be justified at the theoretical level.
Therefore, Corollary 3.3 implies one of the key advantages of the ETD1 scheme (2.10).

Now we turn to the energy stability of the ETDMs2 scheme. Define a mapping 3 : R? — R? as

(3.4) mm=ﬂ%ﬁ

Lemma 3.5. For any v, w € R2, there exists a symmetric matriz Q € R?*? such that

Bv) — B(w) = Qv — w),
and the eigenvalues A1, Ao of Q satisfy f% < A1, A2 < 1. Consequently, it holds that

(3.5) 1B(v) — B(w)| < |[v—w|, Yov,weR%
Proof. The Jacobian matrix of 8 at v = (vy,v2) is

_ 1 1—v? +03 —2v1v9

VB(v) = (1+ [v]2)2 ( — 20105 1+ 0?2 — 02
and the eigenvalues of V3(v) are
1—|v|? 1
V)= —— V)= ——.
:u’l( ) (1+|'U‘2)2 /”LQ( ) 1—|—|’U|2

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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. . 1-a 1
Since min —— = ——, we have
a>0 (1+ «a)? 8

(3.6) S <m) < (o) <1

For any v,w € R2, the Taylor formula gives us

1
B(v) - Blw) = Qv —w), Q= / VB(0v + (1 — )w) do.
0
The symmetry of V3 implies the symmetry of @, so there exists an orthonormal matrix Py =

(ag be) such that
Co d9

()= B () ) G ) v

where & = v + (1 — 0)w, A1 and \q are the eigenvalues of @), which leads to
1

1
M= [ (e + Vina(n)) 6, Na = [ (Gin(€o) + dinalén)) 6.
0 0
The fact a} + b3 = c2 + d2 = 1 implies that
p1(€e) < A < p2(be), p1(€o) < A2 < pa(&o),
1

which gives us —g < A1, A2 < 1 by combining with (3.6). In addition, since the 2-norm of a

symmetric matrix is equal to its spectrum radius, we obtain (3.5). d

Theorem 3.6. The approzimate solution produced by the ETDMs2 scheme (2.11) satisfies

1+k n n n n—
5 (VA (@™t = u)[F + 1V (w” = u" D)%)

(3.7) Exn(u"™) < Ex(u™) +
for any time step size At > 0.
Proof. Recall the ETDMs2 scheme (2.11), that is,
u'tt = eIV ALy LBy far(u™) — Lt (I — (LA By) (fv(u™) — far(u™™h).
Then we have
In(@") = =By Ln(u"tt — e F3%M) — BIH(I — (Ly A ™ B) (far(u™) = far(u™™h)
= By Ly (u™ —u™) — By Ly Biu™ — By (I — (Ly A7 By) (favr(u™) — far(u™™1))
= =B 'Ly (u"™ —u") = Lyu" — (By ' — (LA™ (far (™) = far (@)

Define g3(a) = (1—e~*") =1 — (aAt)~! for a # 0 and an operator Bz = g3(La) = By ' — (LyAt) ™.
It is easy to show that gs(a) = 1 + (e — 1)~ — (aAt)~! and thus 0 < g3(a) < 1 for any a > 0,
which implies that Bj is symmetric positive definite and || Bs|| < 1. Using Lemma 3.1, we get

Exn(u™™) — Ex(u") < (LNu”+1 + far(u™),u™ T — u")N =51+5;
where
S1 = —((BQ(UH-H —u™),u"t — u")N,
Sz = *(BS(fN(un) - fN(unil))aunJrl - Un)N'

First it is obvious that S; < 0 since Bs is positive definite. Note Bs is symmetric and commutes
with Vs, thus we have

So = —(far(u") = far(u" 1), Ba(u™h —u™))
= —(VN (B(Vau") = B(Vau™ 1) + sApn(u™ —u™ 1Y), By(u™ — u”))N
= (B(V,\/u") — B(Vau™ 1) + 6V (u" —u"1), BV (u™ T — u”))N
< (IB(Vau™) = B(Vau" Yy + £l Var (@™ = a1 [ p) [[BsVar(u™* ' = u™)||w,

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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where B : MY x MN — MN x M is defined as (3.4). Denote by V3 the Fréchet-derivative of 3.
The Taylor formula gives

B(Vau") = B(Vau"™") = QuVnr(u" —u"™h),

where
Qn = /1 VB(OVAu" 4 (1 — 0)Vu""t)d6.
We know from Lemma 3.5 that |HQ(:1 Il <1, then
1B(Vau") = BVau" ") < 1QulllVar(u" — )|l < V(" = u"H)|a-
Using the consistency it also holds
1Bs V(™ — ™)l < IBsll|Var(u"* = u) v < [V (™ — ™)Ly,

thus we obtain

So < (14 8)[Var(u”® —u" Y| w[[Var (@™ = ™) ||y
1 + K n n— n n
< FEE (A = e+ T = ) ),
which completes the proof of (3.7). O

Remark 3.7. Unlike the first order scheme (2.10), one may fail to derive a uniform H? bound for
the numerical solution to the second order scheme (2.11), because there are two additional positive
terms involved in the energy inequality (3.7) and a direct control of these accumulative correction
terms is not available. Similarly, the second order nonlinear and linear schemes developed in [22]
also fail to ensure the H? stability of the numerical solution. In comparison, for the second order
nonlinear convex splitting scheme presented in [27], the uniform H? bound of the numerical solution
is obtained from the energy stability by assuming that the concave part is a quadratic term.

4. ERROR ESTIMATES

We denote by u. the exact solution to (1.1). Define HJ¢ (2) = {v € H™(Q) |v is Q-periodic}.
Li and Liu [17] have proved that if the initial data u.(-,0) € Hy;.(Q2) for some integer m > 2, the
solution u. satisfies

ue € L®(0,T; H™ () N L*(0,T; H:2(Q)) and  ue € L*(0,T; HT72(Q)).

per per per
We will derive rigorously the error estimates for the ETD1 and ETDMs2 schemes under some
assumptions on the regularity of u.. Denote by u(t) the limitation of u.(-,t) on the mesh Qu at
any fixed time ¢. Let N = max{N;, N,}. Denoting by Amin the smallest eigenvalue of Lyr, we know
from (2.9) that Ay, > 0.

First, we estimate the error between the exact solution «(¢) and the solution u(t) of the space-
discrete problem (2.4), i.e.,

du
(4.1) dt
u(0) = u(0) € M.

= —e?A3u— V- B(Vna), te(0,T],

Lemma 4.1. Assume that u, € H*(0,T; H7.76(Q)). For any fized t € (0,T], we have

per
(4.2) [u(®) — a(t)llx < CoN™™,
where Cy > 0 is a constant independent on N.

Proof. The exact solution limited on the mesh Qar, u(t), could be regarded as satisfying (4.1) with
a defect 0(t)

d
(4.3) dit‘ = —e2A2u— V- B(Vau) +6(t), te(0,T],

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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where §(t) = e2(A%u — A%ue) + V- B(Vau) — V- B(Vu.). We know from Sobolev embedding
theorem and u, € H(0,T; H"5(Q2)) that

per
sup |[0(t)||n < CLNT™.

t€(0,T)
Let v(t) = u(t) —u(t), t € [0,T], then the difference between (4.3) and (4.1) gives us
d ~
(4.4) d—;’ = —?Av — V- (B(Vau) — B(Va) +6(t), te (0,T],

with v(0) = 0. According to Lemma 3.5, we have

1B(Vau) = B(Vau)lln < IVau— Vatln = [V

Taking the discrete L? inner product of (4.4) with 2v and using Proposition 2.2 yield

d -
EHUII?\/ = 2% | A3 + 2(8(Vaw) — B(VA), Vav)n + 2(8,0) n
< =28 Anvll3r + 21B(Varw) — BVAT) N[ Varvlla + 2(8,v)
< =287 | AnvllFr + 2 Varvllie 4 206, v)a
< =282 Ano||3e + 20l [ An vl + 2018 arllv]lae
1 1
< —2&%|| Anvll3 + @IIUH% + 22| Aoz + 262 16]13 + @HUIIJQ\/

1
= vk + 2e*161%-

An application of the Gronwall inequality then leads to
t
< 2¢ el'™ : T T < e ’ e € (0,17,
vt)Z <262 [ T 6(0)|3 dr < 2Te%T/EC2NTA ) t e (0,T
0

which gives (4.2) with Cy = C,v/2Tee/2" O

Next, we estimate the error between the space-discrete solution %(t) given by (2.6) (equivalent
to (2.4)) and the approximate solution u™ computed by the ETD1 scheme (2.10). Recall Fy(t) =

far(u(t)).

Lemma 4.2. Assume that {u"}"*, is the approzimate solutions calculated by the ETD1 scheme
(2.10) with w® = @(0). If (I + Ly At)Fy € L*(0,T; M) and the time step size At < %, then we
have

(4.5) la(tn) — u™||n < CLAG, 1<n< N,

where Cy > 0 is a constant independent on At and N.

Proof. The space-discrete solution @(t,+1) could be regarded as satisfying (2.10) with a defect 57(11_31,
(4.6) Wtns1) = e PVAYG(t,) — do(Da ) Far(tn) — 650, 0<n<N,—1,

where

At
o, = / e INBED (B (8, 4 7) — Fxe(tn)) dr
0

At T
= / e L (At=T) / Fy(tn +0)dodr.
0 0

Since

/ (L + LAY Fe(tn + o)L do
0

T
T T
— I—l—L At F/ tn-l-*() do

1 3
T T T

— I+ Ly At)Fy th + =0 2da) VT < —M;y,
T(/O ”( N ) /\/’( T )HN ﬁT 1

IN

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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where My = ||(I + LaAt)Fyrll £2(0,7,m~), We have

At T
||(1+LNAt)5£}+>1||Ng/ |||e*LN<At*T>|||/ (I + LAY Fetn + o) | do dr
0 0

At
S %/ Te_)\min(At_T) dT
VT Jo
—AminAt _ .
My, e L+ At _ M,

VT Ot = oVT
Let v = u(t,) — u™, 1 <n < N;. The difference between (2.10) and (4.6) gives
(A7) o= e A — (L) (i (@lt)) — fv (@) =8y, 0<n< N1,
with v = 0. Acting (I + LarAt) on both sides of (4.7) and taking the discrete L? inner product
with v™+! yield

(4.8) o™ 3 4+ E2At| Anv" T3 + KA VA" TR = RHS,  0<n< N —1,

where

At

RHS = (q1 (L A" — oLy A)AL(far(ti(tn)) — far(u™)) — (I + Ly AB)SL), 0" )
with
a(a) = (1+a)e ™ ga) = %
It is easy to show that 0 < ¢1(a) < 1 < ¢a2(a) < 2 for any a > 0, thus
RHS = (g1 (LA™, 0" ) + At(qa (L AL (B(Vt(tn)) — B(Varu™)), V™) x
+ KA (go (L AV v, Varv™ ) v — (T + Ly At)) 0" )
< Mlgi (Lar Ao w0l + (1 + &) Atllge(Lar A [V aro™ [ [V aro™ v
I+ Ly AS v llo™ |y
o™ Ll [ + 201 + £) AL Vo™ (I Vo™l + [+ Ly AL o™ e

IN

| N

1 1
IV IR+ S 10" R + (L4 R ALV R+ (14 m) AL Varo™ 5

+ 17+ Lar A3 [arllo™+ [
Then we get by combining the above equation with (4.8) that

1
U™ R = 10" [3) + At Ano™

< (14 R AT R+ AVA™ e + 1T+ Iy DS a0+
< (14 ) A | A" e + Al [l Anv™ e

+ I(I + Ly At)d +1HN|IU"“|IN

(1+ k)2
2£2
&2
2At|
that is, for 0 <n < Ny — 1,

At g?
Atllo™|3 + *AtHANUnH?\/ + "R+ gAtHANU"HH?\/

< 22|

(I + Ly AL R + 5= 922 HU"HHM

1 g?
5(”””“”/2\/ — ™) + 5At(||ANUn+1||/2\/ — |ANO"IF)

At
< =5 o™ IR+

(1+ k)2
2¢e2
Summing the above inequality from 0 to n leads to

Atllo" |3 + I+ Ly A6 |3

2At”(

1, . e? n
5(““ R = 1013 + Eﬁt(HANU A = 1AA°lIR)

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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1+Ii
k12 k (1) 42
Zn R Athv ||N+2At2||I+LNAt>6k+1HN

At K2+ 2k+3
_ n+1(2 k (1)
= S+ imZn ||N+2At2|\I+LNAt>6 Dl

and consequently,

1 At K2+ 2K+ 3
(5= )15 < im& k|\N+2AtZ|| I+ L As 3.

2
Since At < %, we have

2(k? + 2K + 3) 2e2
niiyz, < 22T F M N+ 1
o3 < 255 kzln B+ Sy g At + 1)

2(k2 4+ 26 +3) 1
< 5—2Atz [[v*]13 + 5sQMfAtQ, 0<n<N,—1.
k=1

An application of the discrete Gronwall inequality [5] leads to
o3 < %EQMfe“*“ﬂ%)T/E?A#, 0<n<N -1,

which gives us (4.5) with C; = 5M e(K* +2r+3)T/e* O

The condition u, € H(0,T; H7%(Q)) implies A% u € H'(0,T; M), which leads to (I +

per
Ly At)Fr € L*(0,T; MN) in Lemma 4.2. Therefore, the direct combination of Lemmas 4.1 and 4.2
gives us the following result on the error estimate of the ETD1 scheme.

Theorem 4.3. Assume that u, € H*(0,T; H5(Q)) with m > 2 and {u™})*, be the appmmmate

per

solution calculated by the ETD1 scheme (2.10) with u® = u(0). If the time step size At < %, then
we have

lu(t,) —u"||y < CAt+N"™),  1<n<N,

where C' > 0 is a constant independent on At and N.

Finally, we turn to the error estimates of the ETDMs2 scheme (2.11) with «® = %(0) and u!
calculated by the ETD1 scheme (2.10). Setting n = 0, acting (I + LarAt) on both sides, and then
taking the discrete L? inner product with 20! in (4.7), we first have

2010t 13 + 262 At Apv 3 + 26AH| VAot |3 < (T + Lar AV |13 + 0t 13-
For any At > 0, it holds that

M2
(4.9) ot I3 + 2e2At | Axo! [ < TE A

Lemma 4.4. Assume that {u"})\", is calculated by the ETDMSQ scheme (2.11) with u® = @(0) and
u' calculated by the ETD1 scheme (2.10). If (I + Ly At)Fy € L2(0, T; M) and the time step size

At < then we have

52
2(kZ+4r+5)’
(4.10) [a(t,) —u|y < CoA?,  1<n <N,
where Cy > 0 is a constant independent on At and N.

Proof. The space-discrete solution (¢,+1) could be regarded as satisfying (2.11) with a defect 57(12_31,

(4.11) Wtn1) = e EVAG(t,) — (Go(Ln) + S1(La)) En(tn) + ¢1(La) Fa(tnor) — 857,
for 1 <n < N; — 1 where

At
2 _ —Ly(At-7) — — —
St = /0 e (Bxltn+7) = (14 5 ) En(ta) + 2 (ta1)) dr

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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:/ o L (At T>/ / Wty + &) dédodr.
0 At

Let My = [[(I + LarAt)Fiell 20,70 Since

//m (T + Ly Al (b + )| dé dor
_ T+At/ / (I + Ly ADF ( at -‘rLAtOf)HNdde

T2
(T + At) / (T + At)
BT 20 voyT do= T2y
T3 2 o o do 2\/T 2

\ /\

we have

At T o
I+ L3l < [ e ™SI [0+ L) (e + € d€ dordr
0 0 —Tta

M At
< 2 T(r + At)ef/\m‘“(m*ﬂ dr

T 2VT
_ Mo Ats . 1- )‘minAt + %()‘minAt)2 B e_)\mmAt < Mo Atg.
2T (AminAt)? 12VT
Let v™ = u(t,) — u™. The difference between (2.11) and (4.11) gives
(4.12) v = e EVATY — (o(Lv) + 61 (L)) (far(@(tn)) — far(u™)
+ 0L (L) (In(@tnr)) = (@) =0, 1<m<Ne—1,

with v = 0 and v! satisfying (4.9). Acting (I + LaAt) on both sides of (4.12) and taking the
discrete L? inner product with v™*1 yield
0" 3 + 2 At|Apv" A + KA VA" 7, = RHS, 1<n< N, —1,

where

RHS = (g1 (La-A)0" — (g2(LarAAt) + g3(LacA8) At(far(@(tn)) — far(u™))
+ (L A AL (@(tn-1)) — far(u" 1) = (I + Ly ADSE) | o)

with ¢q, g2 defined as before and

N

Since % < g3(a) <1 for any a > 0, we get
RHS < flgy (L A" vl v + (1 + ) Al L) + g5 (L AUV A [ [T e
+ (1+ &) At gs (La AN IV A A IV arv™ | ar + [[(I 4 L At) n+1||Nan+1HN
< oI llo™ T I + 3(1 + &) ALV A0 [ Vo™ |

+ (14 B)AL VAV W Varo™ v + [+ Ly ADS) al[o™ | ae

Lo 3(1+ ) wiz 3L+ R) ,
< Sl + Sl + 2L Ao + 2 A T

1 —|— K , 1 + K .
AV R + 2T ALVA YR+ (T + LA o™ v

Thus we have
1
§(Hv”“|\/2\/ — [v"[I3) + 2 At Anv™ IR,

3(1+ k)
2

ALV A" e + 1 + LA o™ |y

< 2+ B)AL VA3 + AV o™ |3

1+/<:

+
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n n 3 1+K: n n
< @+ M)Al ave ™ v + 2T abor v ayer
1+KJ n—1 n—1 n+1
+ S E A AN e+ T+ L ADSEL a0 e
24+ K " " 9(1+ &k " "
< (2—2>Atnv HHJQ\/*'*At”ANU 3 +(4—E)Atn NI
(1‘+'H) e n— 2 n
+ A Ao+ S AtHANv YRt (1t Ly ADSE >1||N+ 2L o2,
4e 2At 2e
that is, for 1 <n < N; — 1,
1 n+1)2 _ n|2 iAt A n+12—1A ”2_1A n—1/2
SR = 0 30) + S AN ANV" 1 = SIAno" R = 5 1Ax 0" 1)
K2+ 4Kk +5 n 9(1 + k)? o (14 k)2 e
< TAtHU A +TAtH I3 + TgAtHU i

g+ Ly A3 3

Summing the above mequahty from 0 to n leads to
Lo g2 12 £ n+1)2 1 n|2 12 1 02
§(||v I3 = 0" M) + 5 At(l Ao HN + 5 IAnv" I = l[Anv ||N = 5 I1ANlR)

K2 +4n+5
AtZH MR+ AfZH IR+ AfZHvk (v

2
2At ZH (I + Ly At) k+1||N

K2+ 4k +5 32+ 7k+5 -
< TR Ao + Tmz 0¥ 3
k=2

5(1 + k)2 1
+ XL Ao 3+ o Z I+ L A0sEh -

and consequently,

1 244 5
(, _ wAt> o2,

2 2e2
324+ Th+5 o 1 5(1+k)?
< TNZ 0" |13 + (5 + TN) o3
k=2

2
5
+ S AAN I + 5 Z I+ L A3, 13

2At
Since At < Wﬁm%), we have
oy < SO A i+ (2 T
+ 262 At Anot 3 + 2A€t 1]1\5122TA7§671
< AT D) Ny 3 o+ Tl e + 262t A e + Tl gt

k=2
for 1 <n < N; — 1. Combining the above inequality with (4.9), it holds that

ABK2 +Th+5) \ TMP | e’MY
||vn+1||j2v§MAtZ”ka?\[+< T Tt )AL 0<n<N-1
£
k=2
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Using the discrete Gronwall inequality, we finally obtain

2 2 2
||,Un+1||?v < (7;\14_‘1 n 9 7]\242 )e4(3)§2-i-'7.‘-€-i-5)7—'/52AI,/_47 0<n<N,— 1,

M2 &2M2 ;
which gives (4.10) with Cy = 1/ ! Tt 5772%2(3”2”*@“”/52. O

Noticing that u. € H?(0,T; HZ:9(Q)) implies (I + Ly At)Fy € L*(0,T; M) in Lemma 4.4,

per
thus the combination of Lemmas 4.1 and 4.4 gives us the following result on the error estimate of

the ETDMs2 scheme.

Theorem 4.5. Assume that u, € H?(0,T; H™5(Q)) with m > 2 and {u"}*, is the approzimate

per

solution calculated by the ETDMs2 scheme (2.11) with u® = u(0) and u' being calculated by the

ETD1 scheme (2.10). If the time step size At < then we have

52
2(k2+4K+5)’
lu(ty) —u"[ly < CAZ+NT™),  1<n< N,
where C' > 0 is a constant independent on At and N.

Remark 4.6. We have seen from Theorems 4.3 and 4.5 that there exists a constraint taking the form
At < (Oe? for the convergence. Actually, such constraints on the time step size are not excessive
since they are necessary to prove the convergence of all the similar numerical schemes for the model
(1.1), see, e.g., [22, 30].

5. NUMERICAL EXPERIMENTS

In this section, we carry out various numerical experiments to verify the temporal convergence
rates of the ETD1 and ETDMs2 schemes, and to simulate the coarsening dynamics of the epitaxial
thin film growth by using the ETDMs2 scheme. We set x = % in all experiments.

5.1. Convergence tests. We considered the evolutions governed by the equation (1.1) with e? = 0.1
on the domain 2 = (0,27) x (0,27) up to the time T' = 0.05. The initial condition was set to be
uo(x,y) = 0.1(sin 3z sin 2y + sin 5z sin 5y) on the uniform mesh with N, = N, = N.

First, we conducted experiments to verify the spatial spectral accuracy. To eliminate the time-
marching effect, we adopted the ETD1 scheme (2.10) with At = T', in other words, we only considered
the convergence of the Fourier collocation approximation applied on the periodic boundary-value
problem of an ellipse equation. We interpolated the grid function v € M by

N

2 v .
Un(z,y)= Y, —explilke+1y)}, (z,y9) €9,
CrCy
kl=—X
where ¢, = 2 for |p| = § and ¢, =1 for [p| < &, and
N
. 1 . N N
= ﬁwzﬂ uf}[ exp{—i(kz; + ly;)}, 3 <kl< 5
We took the interpolation Uy with N = 2048 as the benchmark solution and defined the L? errors
as
2w
err(N) = F Z |u” U2048 xl,yj)| .
,j=1
The values err(N) with N =8k, k =1,2,...,37 are shown in Figure 1 where the spectral accuracy
is obvious.

Second, we tested the convergence rates in time of the ETD1 and ETDMs2 schemes. For the
purpose of comparison, we also compute numerical errors of the SSI1 scheme. We fixed N = 1024
and performed the numerical simulations up to the time 7' = 106 using the time step sizes At = 275§,
k=0,1,2,...,8 with 6 = 0.005. The approximate solution obtained by using the ETDMs2 scheme
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FIGURE 1. Spectral accuracy in space for the ETD1 scheme (2.10).

with At = 278§/5 was taken as the benchmark solution for calculating errors. The discrete L?-
errors of the numerical solutions are shown in Figure 2(a) where the first order accuracy of the SSI1
and ETD1 schemes and the second order accuracy of the ETDMs2 scheme are seen obviously. In
addition, the errors of the ETD1 scheme are smaller than those of the SSI1 scheme although they
have the same order of convergence. For a given level of accuracy, for example, 107>, we found that
the time consumption of the SSI1 scheme is about four times as much as the ETD1 scheme and
nearly a hundred times as much as the ETDMs2 scheme.

We also repeated the above experiments using €2 = 0.01. It is easy to find from Figure 2(b) that
smaller € leads to larger errors while the convergence rates are independent on the value of €.

5 g
3 10° 3 10°F
~ ~
) e}
107 10°F
10° 107
) - —o— ETDMs2 y
107 | e - E 10
. .
- =y 7 - =@
107" -5 -4 ‘73 -2 10° -5 = ‘74 ‘73 -2
10 10 10 10 10 10 10 10
time step time step
(a) €2 =0.1 (b) €2 = 0.01

FIGURE 2. Convergence rates in time of the SSI1, ETD1 and ETDMs2 schemes.

5.2. Coarsening dynamics. To observe the longtime behaviors of the thin film growth, such as
the energy decay rate and the surface roughness growth rate, we simulated the equation (1.1) with
the parameters € = 0.1, 0.09, . ..,0.01 by using the ETDMs2 scheme (2.11). We took a large domain
Q = (0,12.8) x (0,12.8) and used the uniform mesh with N, = N, = N. The initial condition was
set to be a random state given by random numbers varying uniformly from —0.001 to 0.001 on each
grid points. We used N = 512 for € > 0.03, N = 1024 for ¢ = 0.02, and N = 2048 for € = 0.01. For
the time step sizes, we set At = 0.001 on the time interval [0,400), A¢ = 0.01 on the time interval
[400, 6000), At = 0.1 on the time interval [6000,100000], and A¢ = 0.5 for ¢ > 100000 if needed.
Figure 3 shows the time snapshots of the calculated height u with e = 0.01. Coarsening dynamics
with shapes of hills and valleys in the system is evident. At the early period, there are many small
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hills (red part) and valleys (blue part), while at the final time t = 2 x 105, the system saturates to
a one-hill-one-valley structure.

SOCELIN T ISAEE Y 2
D".:‘Q'-,“:« " ” ." ) - .
AR TS N

. 4

NI X A

(a) t =500 (b) t = 3000 (c) t = 20000

(d) t = 90000 (e) t = 300000 (f) ¢ = 2000000

FicURrRE 3. Time snapshots of the calculated height u with ¢ = 0.01.

The energy E(t) is defined in (1.3), the surface roughness R(¢) and the mound width W (¢) are

defined as
1 1
R(t) = —/ |u(z,t) — u(t)|? de, W(t) = —/ |Vu(zx,t)|? de
9 Jo 9 Jo
1
with @(t) = l / u(x,t) de. For the no-slope-selection epitaxial growth model (1.1), it is shown in
Q
11, 18] that

E(t) ~ O(=Int), R(t)~Ot/?), W(t)~ O@t/4).
We numerically verified these scaling laws.

Figure 4 presents the linear fitting lines for the case ¢ = 0.01. Figure 4(a) shows the linear fitting
of the semi-log energy data up to t = 6000, where the fitting line is of the form E = m.Int + b,
with m, = —40.719 and b, = —204.967. Figure 4(b) shows the linear fitting of the log-log surface
roughness data up to ¢t = 6000, where the fitting line is of the form R = b,t" with m, = 0.503 and
b, = 0.406. Figure 4(c) shows the linear fitting of the log-log mound width data up to ¢ = 6000,
where the fitting line is of the form W = b,,t™ with m,, = 0.253 and b,, = 5.974. It is quite evident
that the —Int, t/2 and t'/* scaling laws for the energy decay rate, the surface roughness growth
rate and the mound width growth rate, respectively, are presented by our numerical simulations.

Table 1 gives the linear fitting coefficients me, be, m.., by, My, by, in the same sense as above, for
the cases from ¢ = 0.1 to ¢ = 0.01, We observe from Table 1 that as € decreases, m, and m,,
approach 1/2 and 1/4, respectively.
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FIGURE 4. Evolutions of energy, roughness and width with ¢ = 0.01.
TABLE 1. Coefficients of the linear fittings using data up to ¢t = 400.
5 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01

me  -37.555 -38.699 -39.614 -38.294 -38.275 -39.339 -39.499 -40.038 -40.340 -40.433
be -31.802 -36.781 -45.036 -57.440 -69.293 -78.960 -96.469 -119.664 -150.406 -205.071

My 0.548 0.550 0.548 0.526 0.520 0.523 0.516 0.513 0.510 0.504
b, 0.315 0.320 0.334 0.354 0.366 0.359 0.373 0.388 0.394 0.401
M 0.289 0.289 0.285 0.273 0.268 0.269 0.264 0.261 0.258 0.253
b 1.548 1.660 1.819 2.016 2.232 2.444 2.804 3.323 4.125 5.947

Finally, we consider the energy and L? norm of the gradient of the steady states for various
values. Theoretically, the energy E(t) has a lower bound [2]

E(t) > 7.

L2 L2
Although the bound . is not sharp, the minimum calculated energies m. for various £ match .
with about 3% accuracy, see Figure 5(a). Besides, the L? norm of the gradient of the steady state
scales as O(1/¢) [18], which is also observed in our simulation, see Figure 5(b), where the fitting line
is of the form bye™s with my = —1.008 and b, = 4.0782.

L? 4e272 4272
(1 + 1).

—400 4 ® rawdata
maximum relative error = 0.035965 400 linear fit |1

450 mean relative error = 0.029473
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FIGURE 5. Energy and gradient of steady state versus e.
6. CONCLUSIONS

In this paper, a class of exponential time differencing multistep schemes with Fourier spectral
collocation for spatial discretization are presented for solving the no-slope-selection epitaxial growth

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.



ENERGY STABILITY AND ERROR ESTIMATES FOR EPITAXIAL GROWTH MODEL 21

model with periodic boundary condition in a rectangular domain. In particular, an optimal form of
linear convex splitting is developed and used in the schemes for the purpose of stabilization. The
first and second order schemes are theoretically and numerically proven to be energy stable with
expected convergence rates. The simulated coarsening rates of the decay of energy, the growth of
surface roughness and mound width are in excellent agreement with the theoretical results. We also
note the analysis techniques presented in this paper can be further generalized and used to even
higher order ETD schemes.

If the time integration is approximated via the interpolation of the nonlinear term instead of the
extrapolation, one can similarly derive the Runge-Kutta type ETD schemes [16, 34], which may cost
more calculations pert time step when higher order schemes are adopted. However, the computations
in each time step are independent of the results from previous time steps, which is more convenient
to be used in adaptive time-stepping algorithms. Correspondingly, energy stability and convergence
analysis for the ETDRK schemes could be similarly conducted. Although Fourier spectral method
is used and studied for spatial discretization in this paper due to the periodic boundary condition,
other spectral methods or finite difference schemes also could be used in case of the Dirichlet or
Neumann boundary conditions (see, e.g., [15]). In the end, application of the ETD method to other
phase field models will also be among our future works.
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