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ENERGY STABILITY AND ERROR ESTIMATES OF EXPONENTIAL TIME

DIFFERENCING SCHEMES FOR THE EPITAXIAL GROWTH MODEL

WITHOUT SLOPE SELECTION

LILI JU, XIAO LI, ZHONGHUA QIAO, AND HUI ZHANG

Abstract. In this paper, we propose a class of exponential time differencing (ETD) schemes for
solving the epitaxial growth model without slope selection. A linear convex splitting is first ap-

plied to the energy functional of the model, and then Fourier collocation and ETD-based multistep

approximations are used respectively for spatial discretization and time integration of the corre-
sponding gradient flow equation. Energy stabilities and error estimates of the first and second

order ETD schemes are rigorously established in the fully discrete sense. We also numerically

demonstrate the accuracy of the proposed schemes and simulate the coarsening dynamics with
small diffusion coefficients. The results show the logarithm law for the energy decay and the power

laws for growth of the surface roughness and the mound width, which are consistent with the

existing theories in the literature.

1. Introduction

Let us consider the two-dimensional model of epitaxial thin film growth without slope selection
taking on the form [11]

(1.1)
∂u

∂t
= −∇ ·

(
∇u

1 + |∇u|2

)
− ε2∆2u, x ∈ Ω, t ∈ (0, T ],

where Ω = (x0, x0 +X)×(y0, y0 +Y ) is a rectangular domain, ε > 0 is a constant parameter, and u =
u(x, t) is the scaled height function of the thin film subject to the periodic boundary condition. This
model (1.1) describes the coarsening processes arising from many applications in physics, chemistry
and biology [25], in which the nonlinear second order term models the Ehrlich-Schwoebel effect and
the linear fourth order term the surface diffusion. The equation is mass conservative along the time
evolution due to

(1.2)

∫
Ω

u(x, t) dx =

∫
Ω

u(x, 0) dx, t > 0

under the periodic boundary condition.
The equation (1.1) in fact defines a gradient flow with respect to the L2(Ω) inner product of the

energy functional

(1.3) E(u) =

∫
Ω

(
− 1

2
ln(1 + |∇u|2) +

ε2

2
|∆u|2

)
dx.
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2 LILI JU, XIAO LI, ZHONGHUA QIAO, AND HUI ZHANG

The logarithmic term − 1
2 ln(1 + |y|2), y ∈ R2 is bounded above by zero but unbounded below.

Moreover, it has no relative minima, which implies that there are no energetically favored values
for |∇u|. From a physical point of view, it means that there is no slope selection mechanism in the
epitaxial growth dynamics. Some detailed discussions on this issue could be found in [17, 18] and
the references cited therein. The well-posedness of the initial-boundary-value problem involving the
equation (1.1) was studied in [17] using the perturbation analysis method.

The physically interesting process is the coarsening dynamics occurring on a very long time scale
for spatially large systems, i.e., small ε. For instance, Li and Liu [18] have proved that the energy
is bounded below by O(− ln t) for large time t and the global minimum energy scales as O(ln ε)
in the limit ε → 0. Therefore, numerical simulations for the coarsening dynamics of large systems
require the long time stability and accuracy of the numerical methods. In particular, temporally and
spatially high order schemes with unconditional stability are highly demanded in term of efficiency
and effectiveness.

Energy stability has been investigated recently for numerical schemes of the thin film growth
models [23, 24] and other phase field models [6, 10]. Wang et al. [30] derived first order (in time)
convex splitting schemes for epitaxial growth models under the convex splitting framework exploited
by Eyre [9], and Shen et al. [27] constructed second order (in time) schemes based on the same convex
splitting approach. A linear iteration algorithm was further developed for the second order energy
stable scheme for the model (1.1) in [3]. We note that these numerical schemes are nonlinear although
unconditionally energy stable. A linear convex splitting scheme was developed for the model (1.1)
by Chen et al. [2], and their main contribution lies in an alternate convex splitting of the Ehrlich-
Schwoebel part in (1.3). The convex splitting technique also has been used extensively on different
phase field models, e.g., the Cahn-Hilliard equations [20, 33], the phase field crystal model [31], the
diffuse interface model with Peng-Robinson equation of state [21], etc. On the other hand, second
order nonlinear and linearized Crank-Nicolson type difference schemes were derived by Qiao et al.
[22] for the model (1.1) where the unconditional energy stability is achieved with respect to a modified
energy functional by introducing an auxiliary variable. For the epitaxial growth model with slope
selection, Xu and Tang [32] proposed a first order linear implicit-explicit scheme by adding an order
O(∆t) stabilization term of the form A∆(un+1−un), where A depends nonlinearly on the numerical
solutions. In other words, it implicitly uses the L∞-bound assumption on |∇un| in order to make A
a controllable constant. In a recent work [19], these technical restrictions were removed and a more
reasonable stability theory was established. The linear scheme presented in [2] was essentially a first
order stabilized implicit-explicit scheme with the stabilizer equal to one. The similar approaches
were also applied on the Allen-Cahn and Cahn-Hilliard equations [28]. Overall, there exist very few
work devoted to development of temporally high order schemes with unconditional energy stability
for the model (1.1).

In this paper, we will present fully discrete numerical schemes for solving the model (1.1), that
uses the Fourier spectral collocation approximation for spatial discretization in combination with
exponential time differencing (ETD) [1, 4, 16] and explicit multistep approximations for time inte-
gration. These schemes can be efficiently implemented via the fast Fourier transform (FFT). The
ETD-based schemes often involve exact integration of the linear part of the target equation followed
by an explicit approximation of the temporal integral of the nonlinear term, and can achieve high
accuracy, stability and preservation of the exponential behavior of the system. Hochbruck and Os-
termann provided in [13] a nice review on the exponential integrator based methods, including the
ETD ones. Du and Zhu investigated the linear stabilities of some ETD schemes [7] and modified
ETD schemes [8]. Ju et al. developed stable and compact ETD schemes and their fast implemen-
tations for semilinear second and fourth order parabolic equations [14, 15, 34] by utilizing suitable
linear splitting techniques. However, apart from numerical implementations, theoretical analysis on
stability and convergence of the ETD schemes for the phase field models are still highly desired.

The rest of the paper is organized as follows. In Section 2, we first present a linear convex splitting
of the energy functional (1.3), and then based on this splitting develop a class of fully discrete ETD
numerical schemes, in which Fourier spectral collocation is used for spatial discretization and explicit
multistep approximations for time integration. The energy stabilities of the first and second order (in
time) ETD schemes are proved in Section 3, followed by error estimates rigorously derived in Section
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4. In Section 5, we numerically demonstrate the temporal and spatial accuracy of the proposed ETD
schemes and simulate the coarsening dynamics with small ε to verify the scaling laws obtained at
the theoretical level. Some concluding remarks are given in Section 6.

2. Fully discrete exponential time differencing schemes

It is well known [7] that a suitable linear operator splitting can improve the stability. Motivated
partly by the work of [2], in this section we first provide a sufficient and necessary condition, in-
dependent on the unknown solution u, on the existence of a linear convex splitting of the energy
functional (1.3). Then, we discretize the spatial domain and the time interval, respectively, to design
fully discrete ETD numerical schemes for (1.3).

2.1. Linear convex splitting. We try to find a linear convex splitting of the energy (1.3) as
E(u) = Ec(u)− Ee(u) with

(2.1) Ec(u) =

∫
Ω

(κ
2
|∇u|2 +

ε2

2
|∆u|2

)
dx, Ee(u) =

∫
Ω

(κ
2
|∇u|2 +

1

2
ln(1 + |∇u|2)

)
dx,

where κ > 0 is expected to be as small as possible. Ec(u) is obviously convex as long as κ > 0, but
the convexity of Ee(u) depends on the convexity of the function

G(a, b) =
κ

2
(a2 + b2) +

1

2
ln(1 + a2 + b2), a, b ∈ R.

Proposition 2.1. The function G(a, b) is convex in R2 if and only if κ ≥ 1

8
.

Proof. Simple calculations give us the Hessian matrix

∇2G(a, b) =
1

(1 + a2 + b2)2

(
d11(a2, b2) −2ab
−2ab d22(a2, b2)

)
with

d11(p, q) = κ(p+ q)2 + (2κ− 1)p+ (2κ+ 1)q + κ+ 1,

d22(p, q) = κ(p+ q)2 + (2κ+ 1)p+ (2κ− 1)q + κ+ 1.

The convexity of G is thus equivalent to the positive semi-definiteness of the matrix ∇2G, that is,

d11(p, q) ≥ 0,(2.2a)

d22(p, q) ≥ 0,(2.2b)

d11(p, q)d22(p, q)− 4pq ≥ 0,(2.2c)

where p = a2 and q = b2. Next we prove that (2.2) holds for any p, q ≥ 0 if and only if κ ≥ 1

8
. We

rewrite d11(p, q) as

d11(p, q) = κq2 + (2κp+ 2κ+ 1)q + κp2 + (2κ− 1)p+ κ+ 1.

Since ∂qd11(p, q) > 0 for any κ > 0 and p, q ≥ 0, the inequality d11(p, q) ≥ 0 holds for any p, q ≥ 0 if
and only if d11(p, 0) ≥ 0 for any p ≥ 0, which is equivalent to−

2κ− 1

2κ
> 0,

∆(d11) = 1− 8κ ≤ 0,
or

−
2κ− 1

2κ
≤ 0,

d11(0, 0) ≥ 0,

and then leads to κ ≥ 1

8
. The analysis for the inequality (2.2b) is similar. We next show that the

inequality (2.2c) holds for any p, q ≥ 0 when κ ≥ 1

8
. It is not hard to find

d11(p, q)d22(p, q)− 4pq = (1 + p+ q)[1 + κ(1 + p+ q)]d0(p, q)

with
d0(p, q) = κp2 + [2κ(1 + q)− 1]p+ κ(1 + q)2 − q + 1.

If κ ≥ 1

8
, then ∆(d0) = 1−8κ ≤ 0, which implies that d11(p, q)d22(p, q)−4pq ≥ 0 for any p, q ≥ 0. �
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The above convex splitting of the energy (1.3) motivates us to apply ETD schemes to the split
form of the equation (1.1) with a splitting constant κ ≥ 1

8 . To this end, we rewrite the equation
(1.1) as

(2.3)
∂u

∂t
= −(ε2∆2 − κ∆)u−∇ ·

(
∇u

1 + |∇u|2

)
− κ∆u.

Usually, larger κ leads to more stable numerical schemes, but larger splitting errors.

2.2. Spectral collocation approximations for spatial discretization. Let Nx and Ny be two
even numbers. The Nx×Ny mesh ΩN of the domain Ω is a set of nodes (xi, yj) with xi = x0 + ihx,

yj = y0 + jhy, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, where hx = X
Nx

and hy = Y
Ny

are the uniform mesh sizes in

each dimension. All of the two-dimensional periodic grid functions defined on ΩN are denoted by
MN . We define the index sets

JN = {(i, j) ∈ Z2 | 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny},

ĴN =
{

(k, l) ∈ Z2
∣∣∣ − Nx

2
+ 1 ≤ k ≤ Nx

2
, −Ny

2
+ 1 ≤ l ≤ Ny

2

}
.

For a function f ∈ MN , the 2-D discrete Fourier transform f̂ = Pf is defined componentwise
[26, 29] by

f̂kl =
1

NxNy

∑
(i,j)∈JN

fij exp
(
− i

2kπ

X
xi

)
exp

(
− i

2lπ

Y
yj

)
, (k, l) ∈ ĴN .

The function f can be reconstructed via the corresponding inverse transform f = P−1f̂ with com-
ponents given by

fij =
∑

(k,l)∈ĴN

f̂kl exp
(

i
2kπ

X
xi

)
exp

(
i
2lπ

Y
yj

)
, (i, j) ∈ JN .

Let M̂N = {Pf | f ∈MN } and define the operators D̂x and D̂y on M̂N as

(D̂xf̂)kl =
(2kπi

X

)
f̂kl, (D̂y f̂)kl =

(2lπi

Y

)
f̂kl, (k, l) ∈ ĴN ,

then the Fourier spectral approximations to the first and second order partial derivatives can be
represented as

Dx = P−1D̂xP, Dy = P−1D̂yP, D2
x = P−1D̂2

xP, D2
y = P−1D̂2

yP.

For any f, g ∈ MN , f = (f1, f2)T ∈ MN ×MN and g = (g1, g2)T ∈ MN ×MN , the discrete
gradient, divergence and Laplace operators are given respectively by

∇N f =

(
Dxf

Dyf

)
, ∇N · f = Dxf

1 +Dyf
2, ∆N f = D2

xf +D2
yf,

and the discrete L2 inner product (·, ·)N and L2 norm ‖ · ‖N by

(f, g)N = hxhy
∑

(i,j)∈JN

fijgij , ‖f‖N =
√

(f, f)N ,

(f , g)N = hxhy
∑

(i,j)∈JN

(f1
ijg

1
ij + f2

ijg
2
ij), ‖f‖N =

√
(f ,f)N .

It is easy to show the following proposition.

Proposition 2.2. For any functions f, g ∈MN and g ∈MN ×MN , we have the discrete integra-
tion by parts formulas

(f,∇N · g)N = −(∇N f, g)N , (f,∆N g)N = −(∇N f,∇N g)N = (∆N f, g)N .
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By noticing the property (1.2), without loss of generality, we assume that the mean of u is zero
and only consider the zero-mean grid functions coming from the (NxNy − 1)-dimensional space

MN0 = {v ∈MN | (v, 1)N = 0} = {v ∈MN | v̂00 = 0}.

A function u ∈MN could always be mapped into MN0 by the projection

u 7→ u− 1

XY
(u, 1)N .

Let ∆0
N be the limitation of ∆N on MN0 .

Define L̃N = ε2∆2
N −κ∆N and its limitation onMN0 , LN = ε2(∆0

N )2−κ∆0
N . It is obvious from

Proposition 2.2 that L̃N is symmetric (or self-adjoint) on MN , i.e.,

(L̃Nu, v)N = (u, L̃N v)N , ∀u, v ∈MN .

Moreover, for any u ∈MN0 , we have

(LNu, u)N = ε2‖∆Nu‖2N + κ‖∇Nu‖2N ≥ 0, (LNu, u)N = 0 ⇐⇒ u = 0,

which means that the operator LN is symmetric positive definite (thus invertible) on MN0 . Since
LN is a linear operator on the finite-dimensional linear spaceMN0 , the following properties of matrix
functions could be utilized on LN .

Lemma 2.3 ([12]). Let f be defined on the spectrum of M ∈ Cd×d, that is, the values

f (j)(λi), 0 ≤ j ≤ ni − 1, 1 ≤ i ≤ d

exist, where {λi}di=1 are the eigenvalues of M , and ni is the order of the largest Jordan block where
λi appears. Then

(1) f(M) commutes with M ;
(2) f(MT ) = f(M)T ;
(3) the eigenvalues of f(M) are f(λi), 1 ≤ i ≤ d;
(4) f(P−1MP ) = P−1f(M)P for any nonsingular matrix P ∈ Cd×d;
(5) for any P,Q ∈ Cd×d, e(P+Q)t = ePteQt = eQtePt if and only if PQ = QP ;

(6)
d

dt
(eMt) = MeMt = eMtM .

Remark 2.4. We know that real symmetric matrices are diagonalizable, i.e., each Jordan block is of
order 1. Thus, a function f is defined on the spectrum of a symmetric matrix M ∈ Rd×d as long as
the values {f(λi) : 1 ≤ i ≤ d} exist.

The space-discrete scheme for the equation (2.3) is to find a function ũ : [0, T ]→MN0 such that

(2.4)


dũ

dt
= −LN ũ− fN (ũ), t ∈ (0, T ],

ũ(0) = u0,

where u0 ∈ MN0 is given and fN (ũ) = ∇N ·
(

∇N ũ
1 + |∇N ũ|2

)
+ κ∆N ũ. According to Lemma 2.3,

acting the operator eLN t on both sides of (2.4) leads to

(2.5)
d(eLN tũ)

dt
= −eLN tfN (ũ).

Given a positive integer Nt, we divide the time interval by tn = n∆t, 0 ≤ n ≤ Nt with a uniform
time step ∆t = T

Nt
. Then integrating the equation (2.5) from tn to tn+1 gives us

(2.6) ũ(tn+1) = e−LN ∆tũ(tn)−
∫ ∆t

0

e−LN (∆t−τ)fN (ũ(tn + τ)) dτ.

The equation (2.6) is equivalent to (2.4) and will play a key role in designing ETD schemes for time
stepping.
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Remark 2.5. If we approximate the integration using the left-rectangle quadrature and the expo-
nential by eLN ∆t ≈ I + LN∆t in (2.6), then we obtain

(I + LN∆t)ũ(tn+1) ≈ ũ(tn)−∆tfN (ũ(tn)),

which leads to the first order stabilized semi-implicit (SSI1) scheme for solving (2.3)

(2.7)
un+1 − un

∆t
= −LNun+1 − fN (un).

In particular, the convex splitting scheme proposed in [2] is identical to (2.7) with κ = 1.

2.3. ETD multistep approximations for time integration. We take an explicit multistep
approach to evaluate the time integral on the right-hand-side of (2.6). We use the Lagrange
polynomial interpolation of degree r based on the nodes {tn−r, tn−r+1, . . . , tn} to approximate
FN (tn + τ) = fN (ũ(tn + τ)). Define

Pr(τ) =

r∑
s=0

FN (tn−s)`r,s(τ), τ ∈ [−r∆t,∆t],

where {`r,s(τ)}rs=0 are the standard Lagrange basis functions associated with the nodes {tn−s}rs=0.

We have the interpolation error FN (tn+τ)−Pr(τ) = O(∆tr+1) if the derivative F
(r+1)
N (t) is bounded.

The integral in (2.6) can be approximated by∫ ∆t

0

e−LN (∆t−τ)fN (u(tn + τ)) dτ ≈
r∑
s=0

Sr,s(LN )FN (tn−s),

where

Sr,s(a) =

∫ ∆t

0

`r,s(τ)e−a(∆t−τ) dτ, a ∈ R.

Then we obtain the fully discrete ETD multistep (ETDMs) scheme for solving (2.3) as

(2.8) un+1 = e−LN ∆tun −
r∑
s=0

Sr,s(LN )fN (un−s).

This scheme is expected to be (r + 1)-th order accurate in time. We have

L̃N = ε2(D2
x +D2

y)2 − κ(D2
x +D2

y) = P−1
(
ε2(D̂2

x + D̂2
y)2 − κ(D̂2

x + D̂2
y)
)
P = P−1L̂NP,

where the operator L̂N = ε2(D̂2
x + D̂2

y)2 − κ(D̂2
x + D̂2

y) can be expressed as

(L̂N f̂)kl = λklf̂kl, (k, l) ∈ ĴN

for any f̂ ∈ M̂N , where {λkl | (k, l) ∈ ĴN } are the eigenvalues of L̂N (also L̃N ), that is,

(2.9) λkl = ε2
(4k2π2

X2
+

4l2π2

Y 2

)2

+ κ
(4k2π2

X2
+

4l2π2

Y 2

)
≥ 0.

Noting the definition LN = L̃N |MN
0

and the fact that all of the eigenvectors belonging to the non-

zero eigenvalues of L̃N are exactly the eigenvectors of LN , we know that the eigenvalues of LN are

{λkl | (k, l) ∈ ĴN \ (0, 0)}. Denoting L̂0
N = PLNP

−1, we finally obtain an implementation formula
for the ETD multistep scheme (2.8) as

un+1 = P−1e−L̂
0
N ∆tPun −

r∑
s=0

P−1Sr,s(L̂
0
N )PfN (un−s)

= P−1
(

e−L̂
0
N ∆tPun −

r∑
s=0

Sr,s(L̂
0
N )PfN (un−s)

)
,

where

(e−L̂
0
N ∆tf̂)kl = e−λkl∆tf̂kl, (Sr,s(L̂

0
N )f̂)kl = Sr,s(λkl)f̂kl, (k, l) ∈ ĴN \ (0, 0)
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for any f̂ ∈ M̂N with f̂00 = 0. The operators P and P−1 can be implemented by the 2-D fast
Fourier transform and the corresponding inverse transform, respectively. Therefore, the overall
computational complexity is O(N2 log2N) per time step where N = max{Nx, Ny}.

We also specially remark that the operator Sr,s(LN ) does not depend on time in the case of
uniform time partition. Since

`r,s(τ) =

r∏
q=0,q 6=s

q∆t+ τ

q∆t− s∆t
=

r∏
q=0,q 6=s

q + θ

q − s
=

r∑
p=0

αr,sp θp,

where θ =
τ

∆t
and {αr,sp }rp=0 are the coefficients of the polynomial `r,s(τ), we have

Sr,s(a) =

r∑
p=0

αr,sp
(∆t)p

∫ ∆t

0

τpe−a(∆t−τ) dτ =

r∑
p=0

αr,sp φp(a), 0 ≤ s ≤ r,

where

φp(a) =
1

(∆t)p

∫ ∆t

0

τpe−a(∆t−τ) dτ, 0 ≤ p ≤ r

can be calculated by the recurrence formula
φ0(a) = a−1(1− e−a∆t), φp(a) = a−1

(
1− p

∆t
φp−1(a)

)
, a 6= 0,

φp(a) =
∆t

p+ 1
, a = 0.

For the cases r = 0 and r = 1, we have

`0,0(τ) = 1, `1,0(τ) = 1 +
τ

∆t
, `1,1(τ) = − τ

∆t
,

and the operators Sr,s(LN ) can be expressed as follows:

S0,0(LN ) = φ0(LN ), S1,0(LN ) = φ0(LN ) + φ1(LN ), S1,1(LN ) = −φ1(LN ),

where

φ0(LN ) = L−1
N (I − e−LN ∆t), φ1(LN ) = L−1

N
(
I − (LN∆t)−1(I − e−LN ∆t)

)
.

Thus we obtain the first order ETD multistep scheme (ETD1) as

un+1 = e−LN ∆tun − φ0(LN )fN (un)(2.10)

= P−1
[
e−L̂

0
N ∆tPun − φ0(L̂0

N )PfN (un)
]

and the second order ETD multistep scheme (ETDMs2) as

un+1 = e−LN ∆tun − φ0(LN )fN (un)− φ1(LN )(fN (un)− fN (un−1))(2.11)

= P−1
[
e−L̂

0
N ∆tPun − φ0(L̂0

N )PfN (un)− φ1(L̂0
N )P (fN (un)− fN (un−1))

]
.

Proposition 2.6 (Discrete mass conservation). The ETD1 scheme (2.10) and the ETDMs2 scheme
(2.11) are mass conservative in the discrete sense, i.e., (un+1 − un, 1)N = 0 for 0 ≤ n ≤ Nt − 1.

Proof. We just take care of the ETD1 scheme, and the other case is similar. We know from (2.10)
that

(2.12) un+1 − un = −(I − e−LN ∆t)un − L−1
N (I − e−LN ∆t)fN (un).

Define g1(a) = 1 − e−a∆t for a ∈ R and an operator B1 = g1(LN ) = I − e−LN ∆t. Since LN is
symmetric positive definite and 0 < g1(a) < 1 for any a > 0, we know from Lemma 2.3 that B1 is
also symmetric positive definite and commutes with LN and L−1

N . Then we obtain from (2.12) that

un+1 − un = −B1u
n − L−1

N B1fN (un) = −B1(un + L−1
N fN (un)).

Taking the discrete L2 inner product of the above with the constant v ≡ 1 and using the symmetry
of B1, we obtain

(un+1 − un, 1)N = −(un + L−1
N fN (un), B1v)N .
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8 LILI JU, XIAO LI, ZHONGHUA QIAO, AND HUI ZHANG

Note that

B1 = I − e−LN ∆t = LN∆t− 1

2
(LN∆t)2 +

1

6
(LN∆t)3 + · · · ,

therefore B1 is essentially a differential operator, and thus B1v ≡ 0, which completes the proof. �

3. Energy stability

For a linear symmetric positive definite operator A : MN → MN , we denote by σ(A) the
set of all the eigenvalues of A, and define the norm of A as the spectrum radius of A, that is,
|||A||| = max{|λ| : λ ∈ σ(A)}. It obviously holds

‖Av‖N ≤ |||A|||‖v‖N , ∀ v ∈MN .
The discrete energy functional corresponding to the continuous one E(u) can be defined as

(3.1) EN (u) =
(
− 1

2
ln(1 + |∇Nu|2), 1

)
N

+
ε2

2
‖∆Nu‖2N

for any u ∈MN .

Lemma 3.1. For any v, w ∈MN0 , it holds that

EN (v)− EN (w) ≤ (LN v + fN (w), v − w)N .

Proof. According to Proposition 2.1, a convex splitting of the discrete energy (3.1) can be given by
EN (u) = EN ,c(u)− EN ,e(u) with

EN ,c(u) =
κ

2
‖∇Nu‖2N +

ε2

2
‖∆Nu‖2N ,

EN ,e(u) =
κ

2
‖∇Nu‖2N +

(1

2
ln(1 + |∇Nu|2), 1

)
N
,

which are the corresponding discrete versions of Ec and Ee, respectively. Using the convexity of
EN ,c and EN ,e, we have the following inequality (see [20, Lemma 3.9] or [31, Theorem 3.5])

EN (v)− EN (w) ≤ (δuEN ,c(v)− δuEN ,e(w), v − w)N .

Some careful calculations give the variational derivatives

δuEN ,c(v) = LN v, δuEN ,e(w) = −fN (w),

which completes the proof. �

Theorem 3.2. The approximate solution produced by the ETD1 scheme (2.10) satisfies the energy
inequality

(3.2) EN (un+1) ≤ EN (un)

for any time step size ∆t > 0, i.e., the ETD1 scheme (2.10) is unconditionally energy stable.

Proof. Recall the ETD1 scheme (2.10), that is,

un+1 = e−LN ∆tun − L−1
N B1fN (un).

Thus we have

fN (un) = −B−1
1 LN (un+1 − e−LN ∆tun)

= −B−1
1 LN (un+1 − un + (I − e−LN ∆t)un)

= −B−1
1 LN (un+1 − un)−B−1

1 LNB1u
n

= −B−1
1 LN (un+1 − un)− LNun.

Define g2(a) =
(

1
g1(a) − 1

)
a for a 6= 0 and an operator B2 = g2(LN ) = (B−1

1 − I)LN . For any a > 0,

we have 0 < g1(a) < 1 and thus g2(a) > 0. Therefore, (B−1
1 − I)LN is symmetric positive definite.

Setting v = un+1 and w = un in Lemma 3.1, we obtain

EN (un+1)− EN (un) ≤
(
LNu

n+1 + fN (un), un+1 − un
)
N(3.3)

=
(
−B−1

1 LN (un+1 − un) + LN (un+1 − un), un+1 − un
)
N
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= −
(
B2(un+1 − un), un+1 − un

)
N .

Proposition 2.6 tells us that un+1 − un ∈MN0 , so the energy inequality (3.2) comes from (3.3) and
the fact that B2 is positive definite. �

Corollary 3.3. For the numerical solution {un}Ntn=1 produced by the ETD1 scheme (2.10) with the
starting data u0, there exists a constant C depending only on ε and |Ω| such that

max
1≤n≤Nt

‖∆Nun‖N ≤
2

ε

√
EN (u0) + C.

Proof. For any y ≥ 0 and α ≥ 0, it holds

ln(1 + y) + lnα = ln(1 + (αy + α− 1)) ≤ αy + α− 1,

namely,
ln(1 + y) ≤ αy − lnα+ α− 1,

then we obtain

EN (un) ≥ −α
2
‖∇Nun‖2N −

1

2
(− lnα+ α− 1, 1)N +

ε2

2
‖∆Nun‖2N .

Since un ∈MN0 , we have the following discrete Poincaré inequality:

‖∇Nun‖2N ≤
XY

4π2
‖∆Nun‖2N .

Choosing α =
2π2ε2

XY
and denoting Cα =

1

2
(− lnα+ α− 1), we derive

EN (un) ≥ ε2

4
‖∆Nun‖2N − CαXY.

Using Theorem 3.2, we have EN (un) ≤ EN (un−1) ≤ · · · ≤ EN (u0), then

ε2

4
‖∆Nun‖2N ≤ EN (u0) + CαXY,

which completes the proof. �

Remark 3.4. We know from Corollary 3.3 that the numerical solution to the ETD1 scheme (2.10)
is uniformly bounded in time in the discrete H2 sense. Such uniform bounds were also achieved for
the nonlinear and linear convex splitting schemes given in [2, 30]. By comparison, in some other
related works (see, e.g., [22]), the energy stability is considered with respect to an energy involved
artificial variables. As a result, although the energy stability is obtained at the numerical level, a
uniform in time H2 bound of the numerical solution could hardly be justified at the theoretical level.
Therefore, Corollary 3.3 implies one of the key advantages of the ETD1 scheme (2.10).

Now we turn to the energy stability of the ETDMs2 scheme. Define a mapping β : R2 → R2 as

(3.4) β(v) =
v

1 + |v|2
.

Lemma 3.5. For any v,w ∈ R2, there exists a symmetric matrix Q ∈ R2×2 such that

β(v)− β(w) = Q(v −w),

and the eigenvalues λ1, λ2 of Q satisfy − 1
8 ≤ λ1, λ2 ≤ 1. Consequently, it holds that

(3.5) |β(v)− β(w)| ≤ |v −w|, ∀v,w ∈ R2.

Proof. The Jacobian matrix of β at v = (v1, v2) is

∇β(v) =
1

(1 + |v|2)2

(
1− v2

1 + v2
2 −2v1v2

−2v1v2 1 + v2
1 − v2

2

)
and the eigenvalues of ∇β(v) are

µ1(v) =
1− |v|2

(1 + |v|2)2
, µ2(v) =

1

1 + |v|2
.
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10 LILI JU, XIAO LI, ZHONGHUA QIAO, AND HUI ZHANG

Since min
α≥0

1− α
(1 + α)2

= −1

8
, we have

(3.6) −1

8
≤ µ1(v) ≤ µ2(v) ≤ 1.

For any v,w ∈ R2, the Taylor formula gives us

β(v)− β(w) = Q(v −w), Q =

∫ 1

0

∇β(θv + (1− θ)w) dθ.

The symmetry of ∇β implies the symmetry of Q, so there exists an orthonormal matrix Pθ =(
aθ bθ
cθ dθ

)
such that(

λ1

λ2

)
=

∫ 1

0

(
aθ bθ
cθ dθ

)(
µ1(ξθ)

µ2(ξθ)

)(
aθ cθ
bθ dθ

)
dθ,

where ξθ = θv + (1− θ)w, λ1 and λ2 are the eigenvalues of Q, which leads to

λ1 =

∫ 1

0

(a2
θµ1(ξθ) + b2θµ2(ξθ)) dθ, λ2 =

∫ 1

0

(c2θµ1(ξθ) + d2
θµ2(ξθ)) dθ.

The fact a2
θ + b2θ = c2θ + d2

θ = 1 implies that

µ1(ξθ) ≤ λ1 ≤ µ2(ξθ), µ1(ξθ) ≤ λ2 ≤ µ2(ξθ),

which gives us − 1
8 ≤ λ1, λ2 ≤ 1 by combining with (3.6). In addition, since the 2-norm of a

symmetric matrix is equal to its spectrum radius, we obtain (3.5). �

Theorem 3.6. The approximate solution produced by the ETDMs2 scheme (2.11) satisfies

(3.7) EN (un+1) ≤ EN (un) +
1 + κ

2

(
‖∇N (un+1 − un)‖2N + ‖∇N (un − un−1)‖2N

)
for any time step size ∆t > 0.

Proof. Recall the ETDMs2 scheme (2.11), that is,

un+1 = e−LN ∆tun − L−1
N B1fN (un)− L−1

N (I − (LN∆t)−1B1)(fN (un)− fN (un−1)).

Then we have

fN (un) = −B−1
1 LN (un+1 − e−L∆tun)−B−1

1 (I − (LN∆t)−1B1)(fN (un)− fN (un−1))

= −B−1
1 LN (un+1 − un)−B−1

1 LNB1u
n −B−1

1 (I − (LN∆t)−1B1)(fN (un)− fN (un−1))

= −B−1
1 LN (un+1 − un)− LNun − (B−1

1 − (LN∆t)−1)(fN (un)− fN (un−1)).

Define g3(a) = (1−e−a∆t)−1−(a∆t)−1 for a 6= 0 and an operator B3 = g3(LN ) = B−1
1 −(LN∆t)−1.

It is easy to show that g3(a) = 1 + (ea∆t − 1)−1 − (a∆t)−1 and thus 0 < g3(a) ≤ 1 for any a > 0,
which implies that B3 is symmetric positive definite and |||B3||| ≤ 1. Using Lemma 3.1, we get

EN (un+1)− EN (un) ≤
(
LNu

n+1 + fN (un), un+1 − un
)
N = S1 + S2

where

S1 = −
(
(B2(un+1 − un), un+1 − un

)
N ,

S2 = −
(
B3(fN (un)− fN (un−1)), un+1 − un

)
N .

First it is obvious that S1 ≤ 0 since B2 is positive definite. Note B3 is symmetric and commutes
with ∇N , thus we have

S2 = −
(
fN (un)− fN (un−1), B3(un+1 − un)

)
N

= −
(
∇N · (β(∇Nun)− β(∇Nun−1)) + κ∆N (un − un−1), B3(un+1 − un)

)
N

=
(
β(∇Nun)− β(∇Nun−1) + κ∇N (un − un−1), B3∇N (un+1 − un)

)
N

≤
(
‖β(∇Nun)− β(∇Nun−1)‖N + κ‖∇N (un − un−1)‖N

)
‖B3∇N (un+1 − un)‖N ,
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where β :MN ×MN →MN ×MN is defined as (3.4). Denote by ∇β the Fréchet-derivative of β.
The Taylor formula gives

β(∇Nun)− β(∇Nun−1) = Qn∇N (un − un−1),

where

Qn =

∫ 1

0

∇β(θ∇Nun + (1− θ)∇Nun−1) dθ.

We know from Lemma 3.5 that |||Qn||| ≤ 1, then

‖β(∇Nun)− β(∇Nun−1)‖N ≤ |||Qn|||‖∇N (un − un−1)‖N ≤ ‖∇N (un − un−1)‖N .

Using the consistency it also holds

‖B3∇N (un+1 − un)‖N ≤ |||B3|||‖∇N (un+1 − un)‖N ≤ ‖∇N (un+1 − un)‖N ,

thus we obtain

S2 ≤ (1 + κ)‖∇N (un − un−1)‖N ‖∇N (un+1 − un)‖N

≤ 1 + κ

2

(
‖∇N (un − un−1)‖2N + ‖∇N (un+1 − un)‖2N

)
,

which completes the proof of (3.7). �

Remark 3.7. Unlike the first order scheme (2.10), one may fail to derive a uniform H2 bound for
the numerical solution to the second order scheme (2.11), because there are two additional positive
terms involved in the energy inequality (3.7) and a direct control of these accumulative correction
terms is not available. Similarly, the second order nonlinear and linear schemes developed in [22]
also fail to ensure the H2 stability of the numerical solution. In comparison, for the second order
nonlinear convex splitting scheme presented in [27], the uniform H2 bound of the numerical solution
is obtained from the energy stability by assuming that the concave part is a quadratic term.

4. Error estimates

We denote by ue the exact solution to (1.1). Define Hm
per(Ω) = {v ∈ Hm(Ω) | v is Ω-periodic}.

Li and Liu [17] have proved that if the initial data ue(·, 0) ∈ Hm
per(Ω) for some integer m ≥ 2, the

solution ue satisfies

ue ∈ L∞(0, T ;Hm
per(Ω)) ∩ L2(0, T ;Hm+2

per (Ω)) and ∂tue ∈ L2(0, T ;Hm−2
per (Ω)).

We will derive rigorously the error estimates for the ETD1 and ETDMs2 schemes under some
assumptions on the regularity of ue. Denote by u(t) the limitation of ue(·, t) on the mesh ΩN at
any fixed time t. Let N = max{Nx, Ny}. Denoting by λmin the smallest eigenvalue of LN , we know
from (2.9) that λmin > 0.

First, we estimate the error between the exact solution u(t) and the solution ũ(t) of the space-
discrete problem (2.4), i.e.,

(4.1)


dũ

dt
= −ε2∆2

N ũ−∇N · β(∇N ũ), t ∈ (0, T ],

ũ(0) = u(0) ∈MN0 .

Lemma 4.1. Assume that ue ∈ H1(0, T ;Hm+6
per (Ω)). For any fixed t ∈ (0, T ], we have

(4.2) ‖u(t)− ũ(t)‖N ≤ C0N
−m,

where C0 > 0 is a constant independent on N .

Proof. The exact solution limited on the mesh ΩN , u(t), could be regarded as satisfying (4.1) with
a defect δ(t)

(4.3)
du

dt
= −ε2∆2

Nu−∇N · β(∇Nu) + δ(t), t ∈ (0, T ],
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where δ(t) = ε2(∆2
Nu − ∆2ue) + ∇N · β(∇Nu) − ∇ · β(∇ue). We know from Sobolev embedding

theorem and ue ∈ H1(0, T ;Hm+6
per (Ω)) that

sup
t∈(0,T ]

‖δ(t)‖N ≤ C∗N−m.

Let v(t) = u(t)− ũ(t), t ∈ [0, T ], then the difference between (4.3) and (4.1) gives us

(4.4)
dv

dt
= −ε2∆2

N v −∇N · (β(∇Nu)− β(∇N ũ)) + δ(t), t ∈ (0, T ],

with v(0) = 0. According to Lemma 3.5, we have

‖β(∇Nu)− β(∇N ũ)‖N ≤ ‖∇Nu−∇N ũ‖N = ‖∇N v‖N .

Taking the discrete L2 inner product of (4.4) with 2v and using Proposition 2.2 yield

d

dt
‖v‖2N = −2ε2‖∆N v‖2N + 2(β(∇Nu)− β(∇N ũ),∇N v)N + 2(δ, v)N

≤ −2ε2‖∆N v‖2N + 2‖β(∇Nu)− β(∇N ũ)‖N ‖∇N v‖N + 2(δ, v)N

≤ −2ε2‖∆N v‖2N + 2‖∇N v‖2N + 2(δ, v)N

≤ −2ε2‖∆N v‖2N + 2‖v‖N ‖∆N v‖N + 2‖δ‖N ‖v‖N

≤ −2ε2‖∆N v‖2N +
1

2ε2
‖v‖2N + 2ε2‖∆N v‖2N + 2ε2‖δ‖2N +

1

2ε2
‖v‖2N

=
1

ε2
‖v‖2N + 2ε2‖δ‖2N .

An application of the Gronwall inequality then leads to

‖v(t)‖2N ≤ 2ε2

∫ t

0

e(t−τ)/ε2‖δ(τ)‖2N dτ ≤ 2Tε2eT/ε
2

C2
∗N
−2m, t ∈ (0, T ],

which gives (4.2) with C0 = C∗
√

2TεeT/2ε
2

. �

Next, we estimate the error between the space-discrete solution ũ(t) given by (2.6) (equivalent
to (2.4)) and the approximate solution un computed by the ETD1 scheme (2.10). Recall FN (t) =
fN (ũ(t)).

Lemma 4.2. Assume that {un}Ntn=1 is the approximate solutions calculated by the ETD1 scheme

(2.10) with u0 = ũ(0). If (I + LN∆t)F ′N ∈ L2(0, T ;MN ) and the time step size ∆t ≤ ε2

4 , then we
have

(4.5) ‖ũ(tn)− un‖N ≤ C1∆t, 1 ≤ n ≤ Nt,

where C1 > 0 is a constant independent on ∆t and N .

Proof. The space-discrete solution ũ(tn+1) could be regarded as satisfying (2.10) with a defect δ
(1)
n+1,

(4.6) ũ(tn+1) = e−LN ∆tũ(tn)− φ0(LN )FN (tn)− δ(1)
n+1, 0 ≤ n ≤ Nt − 1,

where

δ
(1)
n+1 =

∫ ∆t

0

e−LN (∆t−τ)(FN (tn + τ)− FN (tn)) dτ

=

∫ ∆t

0

e−LN (∆t−τ)

∫ τ

0

F ′N (tn + σ) dσ dτ.

Since∫ τ

0

‖(I + LN∆t)F ′N (tn + σ)‖N dσ =
τ

T

∫ T

0

‖(I + LN∆t)F ′N (tn +
τ

T
σ)‖N dσ

≤ τ

T

(∫ T

0

‖(I + LN∆t)F ′N (tn +
τ

T
σ)‖2N dσ

) 1
2√

T ≤ τ√
T
M1,
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where M1 = ‖(I + LN∆t)F ′N ‖L2(0,T ;MN ), we have

‖(I + LN∆t)δ
(1)
n+1‖N ≤

∫ ∆t

0

|||e−LN (∆t−τ)|||
∫ τ

0

‖(I + LN∆t)F ′N (tn + σ)‖N dσ dτ

≤ M1√
T

∫ ∆t

0

τe−λmin(∆t−τ) dτ

=
M1√
T

∆t2 · e−λmin∆t − 1 + λmin∆t

(λmin∆t)2
≤ M1

2
√
T

∆t2.

Let vn = ũ(tn)− un, 1 ≤ n ≤ Nt. The difference between (2.10) and (4.6) gives

(4.7) vn+1 = e−LN ∆tvn − φ0(LN )(fN (ũ(tn))− fN (un))− δ(1)
n+1, 0 ≤ n ≤ Nt − 1,

with v0 = 0. Acting (I + LN∆t) on both sides of (4.7) and taking the discrete L2 inner product
with vn+1 yield

(4.8) ‖vn+1‖2N + ε2∆t‖∆N vn+1‖2N + κ∆t‖∇N vn+1‖2N = RHS, 0 ≤ n ≤ Nt − 1,

where

RHS = (q1(LN∆t)vn − q2(LN∆t)∆t(fN (ũ(tn))− fN (un))− (I + LN∆t)δ
(1)
n+1, v

n+1)N

with

q1(a) = (1 + a)e−a, q2(a) =
(1 + a)(1− e−a)

a
.

It is easy to show that 0 < q1(a) < 1 < q2(a) < 2 for any a > 0, thus

RHS = (q1(LN∆t)vn, vn+1)N + ∆t(q2(LN∆t)(β(∇N ũ(tn))− β(∇Nun)),∇N vn+1)N

+ κ∆t(q2(LN∆t)∇N vn,∇N vn+1)N − ((I + LN∆t)δ
(1)
n+1, v

n+1)N

≤ |||q1(LN∆t)|||‖vn‖N ‖vn+1‖N + (1 + κ)∆t|||q2(LN∆t)|||‖∇N vn‖N ‖∇N vn+1‖N
+ ‖(I + LN∆t)δ

(1)
n+1‖N ‖vn+1‖N

≤ ‖vn‖N ‖vn+1‖N + 2(1 + κ)∆t‖∇N vn‖N ‖∇N vn+1‖N + ‖(I + LN∆t)δ
(1)
n+1‖N ‖vn+1‖N

≤ 1

2
‖vn‖2N +

1

2
‖vn+1‖2N + (1 + κ)∆t‖∇N vn‖2N + (1 + κ)∆t‖∇N vn+1‖2N

+ ‖(I + LN∆t)δ
(1)
n+1‖N ‖vn+1‖N .

Then we get by combining the above equation with (4.8) that

1

2
(‖vn+1‖2N − ‖vn‖2N ) + ε2∆t‖∆N vn+1‖2N

≤ (1 + κ)∆t‖∇N vn‖2N + ∆t‖∇N vn+1‖2N + ‖(I + LN∆t)δ
(1)
n+1‖N ‖vn+1‖N

≤ (1 + κ)∆t‖vn‖N ‖∆N vn‖N + ∆t‖vn+1‖N ‖∆N vn+1‖N
+ ‖(I + LN∆t)δ

(1)
n+1‖N ‖vn+1‖N

≤ (1 + κ)2

2ε2
∆t‖vn‖2N +

ε2

2
∆t‖∆N vn‖2N +

∆t

2ε2
‖vn+1‖2N +

ε2

2
∆t‖∆N vn+1‖2N

+
ε2

2∆t
‖(I + LN∆t)δ

(1)
n+1‖2N +

∆t

2ε2
‖vn+1‖2N ,

that is, for 0 ≤ n ≤ Nt − 1,

1

2
(‖vn+1‖2N − ‖vn‖2N ) +

ε2

2
∆t(‖∆N vn+1‖2N − ‖∆N vn‖2N )

≤ ∆t

ε2
‖vn+1‖2N +

(1 + κ)2

2ε2
∆t‖vn‖2N +

ε2

2∆t
‖(I + LN∆t)δ

(1)
n+1‖2N .

Summing the above inequality from 0 to n leads to

1

2
(‖vn+1‖2N − ‖v0‖2N ) +

ε2

2
∆t(‖∆N vn+1‖2N − ‖∆N v0‖2N )
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≤ ∆t

ε2

n∑
k=0

‖vk+1‖2N +
(1 + κ)2

2ε2
∆t

n∑
k=0

‖vk‖2N +
ε2

2∆t

n∑
k=0

‖(I + LN∆t)δ
(1)
k+1‖

2
N

=
∆t

ε2
‖vn+1‖2N +

κ2 + 2κ+ 3

2ε2
∆t

n∑
k=1

‖vk‖2N +
ε2

2∆t

n∑
k=0

‖(I + LN∆t)δ
(1)
k+1‖

2
N ,

and consequently,(1

2
− ∆t

ε2

)
‖vn+1‖2N ≤

κ2 + 2κ+ 3

2ε2
∆t

n∑
k=1

‖vk‖2N +
ε2

2∆t

n∑
k=0

‖(I + LN∆t)δ
(1)
k+1‖

2
N .

Since ∆t ≤ ε2

4 , we have

‖vn+1‖2N ≤
2(κ2 + 2κ+ 3)

ε2
∆t

n∑
k=1

‖vk‖2N +
2ε2

∆t
· M

2
1

4T
∆t4(n+ 1)

≤ 2(κ2 + 2κ+ 3)

ε2
∆t

n∑
k=1

‖vk‖2N +
1

2
ε2M2

1 ∆t2, 0 ≤ n ≤ Nt − 1.

An application of the discrete Gronwall inequality [5] leads to

‖vn+1‖2N ≤
1

2
ε2M2

1 e2(κ2+2κ+3)T/ε2∆t2, 0 ≤ n ≤ Nt − 1,

which gives us (4.5) with C1 =
√

2
2 εM1e(κ2+2κ+3)T/ε2 . �

The condition ue ∈ H1(0, T ;Hm+6
per (Ω)) implies ∆3

N ũ ∈ H1(0, T ;MN ), which leads to (I +

LN∆t)F ′N ∈ L2(0, T ;MN ) in Lemma 4.2. Therefore, the direct combination of Lemmas 4.1 and 4.2
gives us the following result on the error estimate of the ETD1 scheme.

Theorem 4.3. Assume that ue ∈ H1(0, T ;Hm+6
per (Ω)) with m ≥ 2 and {un}Ntn=1 be the approximate

solution calculated by the ETD1 scheme (2.10) with u0 = u(0). If the time step size ∆t ≤ ε2

4 , then
we have

‖u(tn)− un‖N ≤ C(∆t+N−m), 1 ≤ n ≤ Nt,
where C > 0 is a constant independent on ∆t and N .

Finally, we turn to the error estimates of the ETDMs2 scheme (2.11) with u0 = ũ(0) and u1

calculated by the ETD1 scheme (2.10). Setting n = 0, acting (I + LN∆t) on both sides, and then
taking the discrete L2 inner product with 2v1 in (4.7), we first have

2‖v1‖2N + 2ε2∆t‖∆N v1‖2N + 2κ∆t‖∇N v1‖2N ≤ ‖(I + LN∆t)δ
(1)
1 ‖2N + ‖v1‖2N .

For any ∆t > 0, it holds that

(4.9) ‖v1‖2N + 2ε2∆t‖∆N v1‖2N ≤
M2

1

4T
∆t4.

Lemma 4.4. Assume that {un}Ntn=2 is calculated by the ETDMs2 scheme (2.11) with u0 = ũ(0) and
u1 calculated by the ETD1 scheme (2.10). If (I +LN∆t)F ′′N ∈ L2(0, T ;MN ) and the time step size

∆t ≤ ε2

2(κ2+4κ+5) , then we have

(4.10) ‖ũ(tn)− un‖N ≤ C2∆t2, 1 ≤ n ≤ Nt,
where C2 > 0 is a constant independent on ∆t and N .

Proof. The space-discrete solution ũ(tn+1) could be regarded as satisfying (2.11) with a defect δ
(2)
n+1,

(4.11) ũ(tn+1) = e−LN ∆tũ(tn)− (φ0(LN ) + φ1(LN ))FN (tn) + φ1(LN )FN (tn−1)− δ(2)
n+1

for 1 ≤ n ≤ Nt − 1 where

δ
(2)
n+1 =

∫ ∆t

0

e−LN (∆t−τ)
(
FN (tn + τ)−

(
1 +

τ

∆t

)
FN (tn) +

τ

∆t
FN (tn−1)

)
dτ
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=

∫ ∆t

0

e−LN (∆t−τ)

∫ τ

0

∫ σ

−∆t
τ σ

F ′′N (tn + ξ) dξ dσ dτ.

Let M2 = ‖(I + LN∆t)F ′′N ‖L2(0,T ;MN ). Since∫ τ

0

∫ σ

−∆t
τ σ

‖(I + LN∆t)F ′′N (tn + ξ)‖N dξ dσ

=
τ(τ + ∆t)

T 3

∫ T

0

σ

∫ T

0

∥∥∥(I + LN∆t)F ′′N

(
tn −

∆t

T
σ +

τ + ∆t

T 2
σξ
)∥∥∥
N

dξ dσ

≤ τ(τ + ∆t)

T 3
M2

√
T

∫ T

0

σ dσ =
τ(τ + ∆t)

2
√
T

M2,

we have

‖(I + LN∆t)δ
(2)
n+1‖N ≤

∫ ∆t

0

|||e−LN (∆t−τ)|||
∫ τ

0

∫ σ

−∆t
τ σ

‖(I + LN∆t)F ′′N (tn + ξ)‖N dξ dσ dτ

≤ M2

2
√
T

∫ ∆t

0

τ(τ + ∆t)e−λmin(∆t−τ) dτ

=
M2

2
√
T

∆t3 ·
1− λmin∆t+ 1

2 (λmin∆t)2 − e−λmin∆t

(λmin∆t)3
≤ M2

12
√
T

∆t3.

Let vn = ũ(tn)− un. The difference between (2.11) and (4.11) gives

vn+1 = e−LN ∆tvn − (φ0(LN ) + φ1(LN ))(fN (ũ(tn))− fN (un))(4.12)

+ φ1(LN )(fN (ũ(tn−1))− fN (un−1))− δ(2)
n+1, 1 ≤ n ≤ Nt − 1,

with v0 = 0 and v1 satisfying (4.9). Acting (I + LN∆t) on both sides of (4.12) and taking the
discrete L2 inner product with vn+1 yield

‖vn+1‖2N + ε2∆t‖∆N vn+1‖2N + κ∆t‖∇N vn+1‖2N = RHS, 1 ≤ n ≤ Nt − 1,

where

RHS = (q1(LN∆t)vn − (q2(LN∆t) + q3(LN∆t))∆t(fN (ũ(tn))− fN (un))

+ q3(LN∆t)∆t(fN (ũ(tn−1))− fN (un−1))− (I + LN∆t)δ
(2)
n+1, v

n+1)N

with q1, q2 defined as before and

q3(a) =
(1 + a)(e−a − 1 + a)

a2
.

Since 1
2 < q3(a) < 1 for any a > 0, we get

RHS ≤ |||q1(LN∆t)|||‖vn‖N ‖vn+1‖N + (1 + κ)∆t|||q2(LN∆t) + q3(LN∆t)|||‖∇N vn‖N ‖∇N vn+1‖N
+ (1 + κ)∆t|||q3(LN∆t)|||‖∇N vn−1‖N ‖∇N vn+1‖N + ‖(I + LN∆t)δ

(2)
n+1‖N ‖vn+1‖N

≤ ‖vn‖N ‖vn+1‖N + 3(1 + κ)∆t‖∇N vn‖N ‖∇N vn+1‖N
+ (1 + κ)∆t‖∇N vn−1‖N ‖∇N vn+1‖N + ‖(I + LN∆t)δ

(2)
n+1‖N ‖vn+1‖N

≤ 1

2
‖vn‖2N +

1

2
‖vn+1‖2N +

3(1 + κ)

2
∆t‖∇N vn‖2N +

3(1 + κ)

2
∆t‖∇N vn+1‖2N

+
1 + κ

2
∆t‖∇N vn−1‖2N +

1 + κ

2
∆t‖∇N vn+1‖2N + ‖(I + LN∆t)δ

(2)
n+1‖N ‖vn+1‖N .

Thus we have
1

2
(‖vn+1‖2N − ‖vn‖2N ) + ε2∆t‖∆N vn+1‖2N

≤ (2 + κ)∆t‖∇N vn+1‖2N +
3(1 + κ)

2
∆t‖∇N vn‖2N

+
1 + κ

2
∆t‖∇N vn−1‖2N + ‖(I + LN∆t)δ

(2)
n+1‖N ‖vn+1‖N

Jan 4 2017 04:14:45 EST

Version 3 - Submitted to MCOM

This is a pre-publication version of this article, which may differ from the final published version. Copyright restrictions may apply.
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≤ (2 + κ)∆t‖vn+1‖N ‖∆N vn+1‖N +
3(1 + κ)

2
∆t‖vn‖N ‖∆N vn‖N

+
1 + κ

2
∆t‖vn−1‖N ‖∆N vn−1‖N + ‖(I + LN∆t)δ

(2)
n+1‖N ‖vn+1‖N

≤ (2 + κ)2

2ε2
∆t‖vn+1‖2N +

ε2

2
∆t‖∆N vn+1‖2N +

9(1 + κ)2

4ε2
∆t‖vn‖2N +

ε2

4
∆t‖∆N vn‖2N

+
(1 + κ)2

4ε2
∆t‖vn−1‖2N +

ε2

4
∆t‖∆N vn−1‖2N +

ε2

2∆t
‖(I + LN∆t)δ

(2)
n+1‖2N +

∆t

2ε2
‖vn+1‖2N ,

that is, for 1 ≤ n ≤ Nt − 1,

1

2
(‖vn+1‖2N − ‖vn‖2N ) +

ε2

2
∆t(‖∆N vn+1‖2N −

1

2
‖∆N vn‖2N −

1

2
‖∆N vn−1‖2N )

≤ κ2 + 4κ+ 5

2ε2
∆t‖vn+1‖2N +

9(1 + κ)2

4ε2
∆t‖vn‖2N +

(1 + κ)2

4ε2
∆t‖vn−1‖2N

+
ε2

2∆t
‖(I + LN∆t)δ

(2)
n+1‖2N .

Summing the above inequality from 0 to n leads to

1

2
(‖vn+1‖2N − ‖v1‖2N ) +

ε2

2
∆t(‖∆N vn+1‖2N +

1

2
‖∆N vn‖2N − ‖∆N v1‖2N −

1

2
‖∆N v0‖2N )

≤ κ2 + 4κ+ 5

2ε2
∆t

n∑
k=1

‖vk+1‖2N +
9(1 + κ)2

4ε2
∆t

n∑
k=1

‖vk‖2N +
(1 + κ)2

4ε2
∆t

n∑
k=1

‖vk−1‖2N

+
ε2

2∆t

n∑
k=1

‖(I + LN∆t)δ
(2)
k+1‖

2
N

≤ κ2 + 4κ+ 5

2ε2
∆t‖vn+1‖2N +

3κ2 + 7κ+ 5

ε2
∆t

n∑
k=2

‖vk‖2N

+
5(1 + κ)2

2ε2
∆t‖v1‖2N +

ε2

2∆t

n∑
k=1

‖(I + LN∆t)δ
(2)
k+1‖

2
N ,

and consequently, (1

2
− κ2 + 4κ+ 5

2ε2
∆t
)
‖vn+1‖2N

≤ 3κ2 + 7κ+ 5

ε2
∆t

n∑
k=2

‖vk‖2N +
(1

2
+

5(1 + κ)2

2ε2
∆t
)
‖v1‖2N

+
ε2

2
∆t‖∆N v1‖2N +

ε2

2∆t

n∑
k=1

‖(I + LN∆t)δ
(2)
k+1‖

2
N .

Since ∆t ≤ ε2

2(κ2+4κ+5) , we have

‖vn+1‖2N ≤
4(3κ2 + 7κ+ 5)

ε2
∆t

n∑
k=2

‖vk‖2N +
(

2 +
5κ2 + 10κ+ 5

κ2 + 4κ+ 5

)
‖v1‖2N

+ 2ε2∆t‖∆N v1‖2N +
2ε2

∆t
· M

2
2

144T
∆t6n

≤ 4(3κ2 + 7κ+ 5)

ε2
∆t

n∑
k=2

‖vk‖2N + 7‖v1‖2N + 2ε2∆t‖∆N v1‖2N +
ε2M2

2

72
∆t4

for 1 ≤ n ≤ Nt − 1. Combining the above inequality with (4.9), it holds that

‖vn+1‖2N ≤
4(3κ2 + 7κ+ 5)

ε2
∆t

n∑
k=2

‖vk‖2N +
(7M2

1

4T
+
ε2M2

2

72

)
∆t4, 0 ≤ n ≤ Nt − 1.
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Using the discrete Gronwall inequality, we finally obtain

‖vn+1‖2N ≤
(7M2

1

4T
+
ε2M2

2

72

)
e4(3κ2+7κ+5)T/ε2∆t4, 0 ≤ n ≤ Nt − 1,

which gives (4.10) with C2 =

√
7M2

1

4T
+
ε2M2

2

72
e2(3κ2+7κ+5)T/ε2 . �

Noticing that ue ∈ H2(0, T ;Hm+6
per (Ω)) implies (I + LN∆t)F ′′N ∈ L2(0, T ;MN ) in Lemma 4.4,

thus the combination of Lemmas 4.1 and 4.4 gives us the following result on the error estimate of
the ETDMs2 scheme.

Theorem 4.5. Assume that ue ∈ H2(0, T ;Hm+6
per (Ω)) with m ≥ 2 and {un}Ntn=2 is the approximate

solution calculated by the ETDMs2 scheme (2.11) with u0 = u(0) and u1 being calculated by the

ETD1 scheme (2.10). If the time step size ∆t ≤ ε2

2(κ2+4κ+5) , then we have

‖u(tn)− un‖N ≤ C(∆t2 +N−m), 1 ≤ n ≤ Nt,
where C > 0 is a constant independent on ∆t and N .

Remark 4.6. We have seen from Theorems 4.3 and 4.5 that there exists a constraint taking the form
∆t ≤ Cε2 for the convergence. Actually, such constraints on the time step size are not excessive
since they are necessary to prove the convergence of all the similar numerical schemes for the model
(1.1), see, e.g., [22, 30].

5. Numerical experiments

In this section, we carry out various numerical experiments to verify the temporal convergence
rates of the ETD1 and ETDMs2 schemes, and to simulate the coarsening dynamics of the epitaxial
thin film growth by using the ETDMs2 scheme. We set κ = 1

8 in all experiments.

5.1. Convergence tests. We considered the evolutions governed by the equation (1.1) with ε2 = 0.1
on the domain Ω = (0, 2π) × (0, 2π) up to the time T = 0.05. The initial condition was set to be
u0(x, y) = 0.1(sin 3x sin 2y + sin 5x sin 5y) on the uniform mesh with Nx = Ny = N .

First, we conducted experiments to verify the spatial spectral accuracy. To eliminate the time-
marching effect, we adopted the ETD1 scheme (2.10) with ∆t = T , in other words, we only considered
the convergence of the Fourier collocation approximation applied on the periodic boundary-value
problem of an ellipse equation. We interpolated the grid function uN ∈MN by

UN (x, y) =

N
2∑

k,l=−N2

ûNkl
ckcl

exp{i(kx+ ly)}, (x, y) ∈ Ω,

where cp = 2 for |p| = N
2 and cp = 1 for |p| < N

2 , and

ûNkl =
1

N2

N∑
i,j=1

uNij exp{−i(kxi + lyj)}, −N
2
≤ k, l ≤ N

2
.

We took the interpolation UN with N = 2048 as the benchmark solution and defined the L2 errors
as

err(N) =
2π

N

√√√√ N∑
i,j=1

|uNij − U2048(xi, yj)|2.

The values err(N) with N = 8k, k = 1, 2, . . . , 37 are shown in Figure 1 where the spectral accuracy
is obvious.

Second, we tested the convergence rates in time of the ETD1 and ETDMs2 schemes. For the
purpose of comparison, we also compute numerical errors of the SSI1 scheme. We fixed N = 1024
and performed the numerical simulations up to the time T = 10δ using the time step sizes ∆t = 2−kδ,
k = 0, 1, 2, . . . , 8 with δ = 0.005. The approximate solution obtained by using the ETDMs2 scheme
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Figure 1. Spectral accuracy in space for the ETD1 scheme (2.10).

with ∆t = 2−8δ/5 was taken as the benchmark solution for calculating errors. The discrete L2-
errors of the numerical solutions are shown in Figure 2(a) where the first order accuracy of the SSI1
and ETD1 schemes and the second order accuracy of the ETDMs2 scheme are seen obviously. In
addition, the errors of the ETD1 scheme are smaller than those of the SSI1 scheme although they
have the same order of convergence. For a given level of accuracy, for example, 10−5, we found that
the time consumption of the SSI1 scheme is about four times as much as the ETD1 scheme and
nearly a hundred times as much as the ETDMs2 scheme.

We also repeated the above experiments using ε2 = 0.01. It is easy to find from Figure 2(b) that
smaller ε leads to larger errors while the convergence rates are independent on the value of ε.
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10
−5

10
−4

10
−3

10
−2

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

time step

L2  e
rr

or

 

 

SSI1
ETD1
ETDMs2
Δt

(Δt)2

(b) ε2 = 0.01

Figure 2. Convergence rates in time of the SSI1, ETD1 and ETDMs2 schemes.

5.2. Coarsening dynamics. To observe the longtime behaviors of the thin film growth, such as
the energy decay rate and the surface roughness growth rate, we simulated the equation (1.1) with
the parameters ε = 0.1, 0.09, . . . , 0.01 by using the ETDMs2 scheme (2.11). We took a large domain
Ω = (0, 12.8) × (0, 12.8) and used the uniform mesh with Nx = Ny = N . The initial condition was
set to be a random state given by random numbers varying uniformly from −0.001 to 0.001 on each
grid points. We used N = 512 for ε ≥ 0.03, N = 1024 for ε = 0.02, and N = 2048 for ε = 0.01. For
the time step sizes, we set ∆t = 0.001 on the time interval [0, 400), ∆t = 0.01 on the time interval
[400, 6000), ∆t = 0.1 on the time interval [6000, 100000], and ∆t = 0.5 for t > 100000 if needed.

Figure 3 shows the time snapshots of the calculated height u with ε = 0.01. Coarsening dynamics
with shapes of hills and valleys in the system is evident. At the early period, there are many small
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hills (red part) and valleys (blue part), while at the final time t = 2× 106, the system saturates to
a one-hill-one-valley structure.

(a) t = 500 (b) t = 3000 (c) t = 20000

(d) t = 90000 (e) t = 300000 (f) t = 2000000

Figure 3. Time snapshots of the calculated height u with ε = 0.01.

The energy E(t) is defined in (1.3), the surface roughness R(t) and the mound width W (t) are
defined as

R(t) =

√
1

|Ω|

∫
Ω

|u(x, t)− ū(t)|2 dx, W (t) =

√
1

|Ω|

∫
Ω

|∇u(x, t)|2 dx

with ū(t) =
1

|Ω|

∫
Ω

u(x, t) dx. For the no-slope-selection epitaxial growth model (1.1), it is shown in

[11, 18] that

E(t) ∼ O(− ln t), R(t) ∼ O(t1/2), W (t) ∼ O(t1/4).

We numerically verified these scaling laws.
Figure 4 presents the linear fitting lines for the case ε = 0.01. Figure 4(a) shows the linear fitting

of the semi-log energy data up to t = 6000, where the fitting line is of the form E = me ln t + be
with me = −40.719 and be = −204.967. Figure 4(b) shows the linear fitting of the log-log surface
roughness data up to t = 6000, where the fitting line is of the form R = brt

mr with mr = 0.503 and
br = 0.406. Figure 4(c) shows the linear fitting of the log-log mound width data up to t = 6000,
where the fitting line is of the form W = bwt

mw with mw = 0.253 and bw = 5.974. It is quite evident
that the − ln t, t1/2 and t1/4 scaling laws for the energy decay rate, the surface roughness growth
rate and the mound width growth rate, respectively, are presented by our numerical simulations.

Table 1 gives the linear fitting coefficients me, be,mr, br,mw, bw, in the same sense as above, for
the cases from ε = 0.1 to ε = 0.01, We observe from Table 1 that as ε decreases, mr and mw

approach 1/2 and 1/4, respectively.
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Figure 4. Evolutions of energy, roughness and width with ε = 0.01.

Table 1. Coefficients of the linear fittings using data up to t = 400.

ε 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01
me -37.555 -38.699 -39.614 -38.294 -38.275 -39.339 -39.499 -40.038 -40.340 -40.433
be -31.802 -36.781 -45.036 -57.440 -69.293 -78.960 -96.469 -119.664 -150.406 -205.071
mr 0.548 0.550 0.548 0.526 0.520 0.523 0.516 0.513 0.510 0.504
br 0.315 0.320 0.334 0.354 0.366 0.359 0.373 0.388 0.394 0.401
mw 0.289 0.289 0.285 0.273 0.268 0.269 0.264 0.261 0.258 0.253
bw 1.548 1.660 1.819 2.016 2.232 2.444 2.804 3.323 4.125 5.947

Finally, we consider the energy and L2 norm of the gradient of the steady states for various ε
values. Theoretically, the energy E(t) has a lower bound [2]

E(t) ≥ γε =
L2

2

(
ln

4ε2π2

L2
− 4ε2π2

L2
+ 1
)
.

Although the bound γε is not sharp, the minimum calculated energies mε for various ε match γε
with about 3% accuracy, see Figure 5(a). Besides, the L2 norm of the gradient of the steady state
scales as O(1/ε) [18], which is also observed in our simulation, see Figure 5(b), where the fitting line
is of the form bgε

mg with mg = −1.008 and bg = 4.0782.
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Figure 5. Energy and gradient of steady state versus ε.

6. Conclusions

In this paper, a class of exponential time differencing multistep schemes with Fourier spectral
collocation for spatial discretization are presented for solving the no-slope-selection epitaxial growth
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model with periodic boundary condition in a rectangular domain. In particular, an optimal form of
linear convex splitting is developed and used in the schemes for the purpose of stabilization. The
first and second order schemes are theoretically and numerically proven to be energy stable with
expected convergence rates. The simulated coarsening rates of the decay of energy, the growth of
surface roughness and mound width are in excellent agreement with the theoretical results. We also
note the analysis techniques presented in this paper can be further generalized and used to even
higher order ETD schemes.

If the time integration is approximated via the interpolation of the nonlinear term instead of the
extrapolation, one can similarly derive the Runge-Kutta type ETD schemes [16, 34], which may cost
more calculations pert time step when higher order schemes are adopted. However, the computations
in each time step are independent of the results from previous time steps, which is more convenient
to be used in adaptive time-stepping algorithms. Correspondingly, energy stability and convergence
analysis for the ETDRK schemes could be similarly conducted. Although Fourier spectral method
is used and studied for spatial discretization in this paper due to the periodic boundary condition,
other spectral methods or finite difference schemes also could be used in case of the Dirichlet or
Neumann boundary conditions (see, e.g., [15]). In the end, application of the ETD method to other
phase field models will also be among our future works.
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