Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/9545
Title: Probing ruthenium-acetylide bonding interactions : synthesis, electrochemistry, and spectroscopic studies of acetylide-ruthenium complexes supported by tetradentate macrocyclic amine and diphosphine ligands
Authors: Wong, CY
Che, CM
Chan, MCW
Han, J
Leung, KH
Phillips, DL
Wong, KY 
Zhu, N
Issue Date: 2005
Source: Journal of the American Chemical Society, 2005, v. 127, no. 40, p. 13997-14007 How to cite?
Journal: Journal of the American Chemical Society 
Abstract: The synthesis and spectroscopic properties of trans-[RuL 4(C≡CAr)2] (L4 = two 1,2-bis- (dimethylphosphino)ethane, (dmpe)2; 1,5,9,13-tetramethyl-1,5,9,13- tetraazacyclohexadecane, 16-TMC; 1,-12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8- dioxacyclopentadecane, N2O2) are described. Investigations into the effects of varying the [RuL4] core, acetylide ligands, and acetylide chain length for the [-C≡C(C6H 4C=C)n-1Ph] and [-C≡C(C6H 4)n-1Ph] (n = 1-3) series upon the electronic and electrochemical characteristics of trans-[RuL4(C≡CAr) 2]0/+ are presented. DFT and TD-DFT calculations have been performed on frans-[Ru(L′)4(C≡CAr)2] 0/+ (L′ = PH3 and NH3) to examine the metal-acetylide π-interaction and the nature of the associated electronic transition(s). It was observed that (1) the relationship between the transition energy and 1/n for trans-[Ru(dmpe)2{C≡C(C6H 4C≡C)n-1Ph}2] (n = 1-3) is linear, and (2) the sum of the dπRuII) → π*(C≡CAr) MLCT energy for trans-[Ru(16-TMC or N2O2)(C≡CAr) 2] and the π-(C≡CAr) → dπ(RuIII) LMCT energy for trans-[Ru(16-TMC or N2O2)(C≡CAr) 2]+ corresponds to the intraligand ππ* absorption energy for trans-[Ru(16-TMC or N2O2) (C≡CAr)2]. The crystal structure of trans-[Ru(dmpe) 2-{C≡C(C6H4C≡C)2Ph} 2] shows that the two edges of the molecule are separated by 41.7 Å. The electrochemical and spectroscopic properties of these complexes can be systematically tuned by modifying L4 and Ar to give E 1/2 values for oxidation of trans-[RuL4(C≡CAr) 2] that span over 870 mV and λmax values of trans-[RuL4(C≡CAr)2] that range from 19 230 to 31 750 cm-1. The overall experimental findings suggest that the π-back-bonding interaction in trans-[RuL4(C≡CAr) 2] is weak and the [RuL4] moiety in these molecules may be considered to be playing a "dopant" role in a linear rigid π-conjugated rod.
URI: http://hdl.handle.net/10397/9545
ISSN: 0002-7863
DOI: 10.1021/ja053076+
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

49
Last Week
0
Last month
0
Citations as of Sep 11, 2017

WEB OF SCIENCETM
Citations

46
Last Week
0
Last month
0
Citations as of Sep 21, 2017

Page view(s)

59
Last Week
9
Last month
Checked on Sep 24, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.