Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/8632
Title: A lattice Boltzmann method based numerical scheme for microchannel flows
Authors: Fu, SC
Leung, WWF 
So, RMC
Issue Date: 2009
Source: Journal of fluids engineering, Transactions of the ASME, 2009, v. 131, no. 8, p. 0814011-08140111 How to cite?
Journal: Journal of Fluids Engineering, Transactions of the ASME 
Abstract: Conventional lattice Boltzmann method (LBM) is hyperbolic and can be solved locally, explicitly, and efficiently on parallel computers. The LBM has been applied to different types of complex flows with varying degrees of success, and with increased attention focusing on microscale flows now. Due to its small scale, microchannel flows exhibit many interesting phenomena that are not observed in their macroscale counterpart. It is known that the Navier-Stokes equations can still be used to treat microchannel flows if a slip-wall boundary condition is assumed. The setting of boundary conditions in the conventional LBM has been a difficult task, and reliable boundary setting methods are limited. This paper reports on the development of a finite difference LBM (FDLBM) based numerical scheme suitable for microchannel flows to solve the modeled Boltzmann equation using a splitting technique that allows convenient application of a slip-wall boundary condition. Moreover, the fluid viscosity is accounted for as an additional term in the equilibrium particle distribution function, which offers the ability to simulate both Newtonian and non-Newtonian fluids. A two-dimensional nine-velocity lattice model is developed for the numerical simulation. Validation of the FDLBM is carried out against microchannel and microtube flows, a driven cavity flow, and a two-dimensional sudden expansion flow. Excellent agreement is obtained between numerical calculations and analytical solutions of these flows.
URI: http://hdl.handle.net/10397/8632
ISSN: 0098-2202
DOI: 10.1115/1.3155993
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

7
Last Week
0
Last month
0
Citations as of Aug 19, 2017

WEB OF SCIENCETM
Citations

5
Last Week
0
Last month
0
Citations as of Aug 21, 2017

Page view(s)

30
Last Week
1
Last month
Checked on Aug 21, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.