Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/8479
Title: Simultaneous synthesis and functionalization of water-soluble up-conversion nanoparticles for in-vitro cell and nude mouse imaging
Authors: Wang, ZL
Hao, J 
Chan, HLW 
Law, GL 
Wong, WT 
Wong, KL
Murphy, MB
Su, T
Zhang, ZH
Zeng, SQ
Issue Date: 2011
Publisher: Royal Society of Chemistry
Source: Nanoscale, 2011, v. 3, no. 5, p. 2175-2181 How to cite?
Journal: Nanoscale 
Abstract: Water-solubility and biocompatibility are prerequisites for rare-earth up-converting nanophosphors applied to biological imaging. In this work, we have developed a facile and one-step synthesis technique, through which water-soluble NaYF4: Yb3+, Er3+ nanoparticles (NPs) with functional groups including 3-mercaptopropionic acid, 6-aminocaproic acid and poly(ethylene glycol)methyl ether on their surface can be directly prepared without any further surface treatment. Some inorganic salts will be selected as starting materials, water and some low toxic organic agents have been used as reaction media, which differs from earlier works. Structural and up-converting fluorescence are characterized by a variety of techniques. Cell uptake and in-vitro imaging of the as-synthesized NPs have been investigated using a multiphoton con-focal laser scanning microscope with a near-infrared excitation source. Internalization of the bare and functionalized NPs in human lung carcinoma A549 and human cervical carcinoma HeLa cells are studied at a nanoparticle loading of 10 g mL-1 over an exposure period from 30 min to 24 h. The cytotoxicity of modified NPs in HeLa cells is found to be low. In addition, the feasibility of the NPs in animal imaging has been demonstrated by subcutaneously injecting these NPs into nude mouse. The results indicated that our directly synthesized NPs coated with various functional groups are promising as bio-imaging agents due to their easy uptake, long lasting, low cytotoxicity, emissive in various human carcinoma cell lines and small animals through up-conversion with near-infrared excitation.
URI: http://hdl.handle.net/10397/8479
ISSN: 2040-3364
EISSN: 2040-3372
DOI: 10.1039/c1nr10090d
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

87
Last Week
0
Last month
0
Citations as of Oct 19, 2017

WEB OF SCIENCETM
Citations

87
Last Week
0
Last month
0
Citations as of Oct 21, 2017

Page view(s)

115
Last Week
2
Last month
Checked on Oct 16, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.