Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/82309
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorPhotonics Research Centre-
dc.contributorDepartment of Electrical Engineering-
dc.contributorChinese Mainland Affairs Office-
dc.creatorGunawardena, DS-
dc.creatorLaw, OK-
dc.creatorLiu, Z-
dc.creatorZhong, XX-
dc.creatorHo, YT-
dc.creatorTam, HY-
dc.date.accessioned2020-05-05T05:59:31Z-
dc.date.available2020-05-05T05:59:31Z-
dc.identifier.urihttp://hdl.handle.net/10397/82309-
dc.language.isoenen_US
dc.publisherOptical Society of Americaen_US
dc.rights© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement (https://www.osapublishing.org/library/license_v1.cfm#VOR-OA)en_US
dc.rightsJournal © 2020en_US
dc.rights© 2020 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.en_US
dc.rightsThe following publication Dinusha Serandi Gunawardena, On kit Law, Zhengyong Liu, Xiaoxuan Zhong, Yuk-Ting Ho, and Hwa-Yaw Tam, "Resurgent regenerated fiber Bragg gratings and thermal annealing techniques for ultra-high temperature sensing beyond 1400°C," Opt. Express 28, 10595-10608 (2020) is available at https://dx.doi.org/10.1364/OE.375421en_US
dc.titleResurgent regenerated fiber bragg gratings and thermal annealing techniques for ultra-high temperature sensing beyond 1400 degrees Cen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage10595-
dc.identifier.epage10608-
dc.identifier.volume28-
dc.identifier.issue7-
dc.identifier.doi10.1364/OE.375421-
dcterms.abstractWe report for the first time the resurgence of regenerated fiber Bragg gratings (RFBGs) useful for ultra-high temperature measurements exceeding 1400 degrees C. A detailed study of the dynamics associated with grating regeneration in six-hole microstructured optical fibers (SHMOFs) and single mode fibers (SMFs) was conducted. Rapid heating and rapid cooling techniques appeared to have a significant impact on the thermal sustainability of the RFBGs in both types of optical fibers reaching temperature regimes exceeding 1400 degrees C. The presence of air holes sheds new light in understanding the thermal response of RFBGs and the stresses associated with them, which governs the variation in the Bragg wavelength.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationOptics express, 30 Mar. 2020, v. 28, no. 7, p. 10595-10608-
dcterms.isPartOfOptics express-
dcterms.issued2020-
dc.identifier.isiWOS:000523766500126-
dc.identifier.pmid32225641-
dc.identifier.eissn1094-4087-
dc.description.validate202006 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Gunawardena_Resurgent_Regenerated_Fiber.pdf3.26 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

101
Last Week
1
Last month
Citations as of Mar 24, 2024

Downloads

64
Citations as of Mar 24, 2024

SCOPUSTM   
Citations

6
Citations as of Mar 28, 2024

WEB OF SCIENCETM
Citations

6
Citations as of Mar 28, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.