Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/82179
Title: A multichannel 2D convolutional neural network model for task-evoked fMRI data classification
Authors: Hu, JL
Kuang, YZ
Liao, B
Cao, LJ
Dong, SB
Li, P 
Issue Date: 2019
Source: Computational intelligence and neuroscience, 31 Dec. 2019, v. 2019, 5065214, p. 1-9
Abstract: Deep learning models have been successfully applied to the analysis of various functional MRI data. Convolutional neural networks (CNN), a class of deep neural networks, have been found to excel at extracting local meaningful features based on their shared-weights architecture and space invariance characteristics. In this study, we propose M2D CNN, a novel multichannel 2D CNN model, to classify 3D fMRI data. The model uses sliced 2D fMRI data as input and integrates multichannel information learned from 2D CNN networks. We experimentally compared the proposed M2D CNN against several widely used models including SVM, 1D CNN, 2D CNN, 3D CNN, and 3D separable CNN with respect to their performance in classifying task-based fMRI data. We tested M2D CNN against six models as benchmarks to classify a large number of time-series whole-brain imaging data based on a motor task in the Human Connectome Project (HCP). The results of our experiments demonstrate the following: (i) convolution operations in the CNN models are advantageous for high-dimensional whole-brain imaging data classification, as all CNN models outperform SVM; (ii) 3D CNN models achieve higher accuracy than 2D CNN and 1D CNN model, but 3D CNN models are computationally costly as any extra dimension is added in the input; (iii) the M2D CNN model proposed in this study achieves the highest accuracy and alleviates data overfitting given its smaller number of parameters as compared with 3D CNN.
Publisher: Hindawi
Journal: Computational intelligence and neuroscience 
EISSN: 1687-5273
DOI: 10.1155/2019/5065214
Rights: Copyright © 2019 Jinlong Hu et al. This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The following publication Hu, J. L., Kuang, Y. Z., Liao, B., Cao, L. J., Dong, S. B., & Li, P. (2019). A multichannel 2D convolutional neural network model for task-evoked fMRI data classification. Computational Intelligence and Neuroscience, 5065214, 1-9 is available at https://dx.doi.org/10.1155/2019/5065214
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Hu_Multichannel_2D_Convolutional.pdf1.75 MBAdobe PDFView/Open
Access
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Full Text

Page view(s)

3
Citations as of Jul 14, 2020

Download(s)

4
Citations as of Jul 14, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.