Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/82168
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorAlotaibi, S-
dc.creatorAmooie, MA-
dc.creatorAhmadi, MH-
dc.creatorNabipour, N-
dc.creatorChau, KW-
dc.date.accessioned2020-05-05T05:58:56Z-
dc.date.available2020-05-05T05:58:56Z-
dc.identifier.issn1994-2060-
dc.identifier.urihttp://hdl.handle.net/10397/82168-
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.rights© 2020 The Author(s).en_US
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Sorour Alotaibi, Mohammad Ali Amooie, Mohammad Hossein Ahmadi, NarjesNabipour & Kwok-wing Chau (2020) Modeling thermal conductivity of ethylene glycol-basednanofluids using multivariate adaptive regression splines and group method of data handlingartificial neural network, Engineering Applications of Computational Fluid Mechanics, 14:1,379-390 is available at https://dx.doi.org/10.1080/19942060.2020.1715843en_US
dc.subjectNanofluiden_US
dc.subjectGMDHen_US
dc.subjectMARSen_US
dc.subjectThermal conductivityen_US
dc.subjectArtificial neural networken_US
dc.titleModeling thermal conductivity of ethylene glycol-based nanofluids using multivariate adaptive regression splines and group method of data handling artificial neural networken_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage379-
dc.identifier.epage390-
dc.identifier.volume14-
dc.identifier.issue1-
dc.identifier.doi10.1080/19942060.2020.1715843-
dcterms.abstractAugmenting the thermal conductivity (TC) of fluids makes them more favorable for thermal applications. In this regard, nanofluids are suggested for achieving improved heat transfer owing to their modified TC. The TC of the base fluid, the volume fraction and mean diameter of particles, and the temperature are the main elements influencing the TC of nanofluids. In this article, two approaches, namely multivariate adaptive regression splines (MARS) and group method of data handling (GMDH), are applied for forecasting the TC of ethylene glycol-based nanofluids containing SiC, Ag, CuO, , and MgO particles. Comparison of the data forecast by the models with experimental values shows a higher level of confidence in GMDH for modeling the TC of these nanofluids. The values determined using MARS and GMDH for modeling are 0.9745 and 0.9332, respectively. Moreover, the importance of the inputs is ranked as volume fraction, TC of the solid phase, temperature and particle dimensions.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEngineering applications of computational fluid mechanics, 2020, v. 14, no. 1, p. 379-390-
dcterms.isPartOfEngineering applications of computational fluid mechanics-
dcterms.issued2020-
dc.identifier.isiWOS:000511249900001-
dc.identifier.scopus2-s2.0-85079241899-
dc.identifier.eissn1997-003X-
dc.description.validate202006 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Alotaibi_Thermal_Conductivity_Ethylene.pdf2.04 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

73
Last Week
3
Last month
Citations as of Apr 14, 2024

Downloads

60
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

24
Citations as of Apr 12, 2024

WEB OF SCIENCETM
Citations

26
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.