Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/81247
Title: An RGB-D data processing framework based on environment constraints for mapping indoor environments
Authors: Darwish, W 
Li, W 
Tang, S
Li, Y 
Chen, W 
Keywords: 3D features
Constraint mapping
Indoor reconstruction
RGB-D sensor
SLAM
Issue Date: 2019
Publisher: Copernicus Publications
Source: ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2019, v. 4, no. 2/W5, p. 263-270 How to cite?
Journal: ISPRS annals of the photogrammetry, remote sensing and spatial information sciences 
Abstract: The adoption of RGB and depth (RGB-D) sensors for surveying applications (i.e., building information modeling [BIM], indoor navigation, and three-dimensional [3D] models) to replace expensive and time-consuming methods (e.g., stereo cameras, laser scanners) has recently attracted great attention. Due to the distinctive structure and scalability of indoor environments, the depth quality produced from RGB-D cameras and the simultaneous localization and mapping (SLAM) system responsible for the cameras pose estimation are substantial problems with existing RGB-D mapping systems. This study introduces a new RGB-D data processing framework that adopts two-dimensional and 3D features from RGB and depth images. To overcome the self-repetitive structure of indoor environments, the proposed framework uses novel description functions for both line and plane features extracted from RGB and depth images for further matching between successive RGB-D frame features. Also, the framework estimates the camera pose by minimizing the combined geometric distance of both two-dimensional and 3D features. Using the previously known structure of the indoor environment, the framework leverages the structural constraints to enhance 3D model precision. The framework also adopts a graph-based optimization technique to distribute the closure error to the graphs nodes and edges when a loop closure is detected. The visual RGB-D SLAM system and the default sensor tracking system (SensorFusion) were used to assess the performance of the proposed framework. The results show that the proposed framework can achieve significant improvement in 3D model accuracy.
Description: 4th ISPRS Geospatial Week 2019, Netherlands, 10-14 June 2019
URI: http://hdl.handle.net/10397/81247
ISSN: 2194-9042
EISSN: 2194-9050
DOI: 10.5194/isprs-annals-IV-2-W5-263-2019
Rights: © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.
The following publication Darwish, W., Li, W., Tang, S., Li, Y., and Chen, W.: AN RGB-D DATA PROCESSING FRAMEWORK BASED ON ENVIRONMENT CONSTRAINTS FOR MAPPING INDOOR ENVIRONMENTS, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W5, 263-270 is available at https://doi.org/10.5194/isprs-annals-IV-2-W5-263-2019, 2019
Appears in Collections:Conference Paper

Files in This Item:
File Description SizeFormat 
Darwish_RGB-D_DATA_PROCESSING.pdf7.11 MBAdobe PDFView/Open
Access
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Contents

Page view(s)

69
Citations as of Sep 18, 2019

Download(s)

1
Citations as of Sep 18, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.