Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/81172
Title: A unified controller for region-reaching and deforming of soft objects
Authors: Wang, Z
Li, X
Navarro-Alarcon, D 
Liu, YH
Keywords: Strain
Deformable models
Cameras
End effectors
Robot vision systems
Adaptation models
Issue Date: 2018
Publisher: Institute of Electrical and Electronics Engineers
Source: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 1-5 Oct. 2018, Madrid, Spain, p. 472-478 How to cite?
Journal: IEEE International Conference on Intelligent Robots and Systems
Abstract: Emerging applications of robotic manipulation of deformable objects have opened up new challenges in robot control. While several control techniques have been developed to manipulate deformable objects, the performance of existing methods is commonly limited by two issues: 1) implicit assumption that the physical contact between the end-effector and the object is always maintained, and 2) requirements of exact parameters of deformation model, which are difficult to obtain. This paper presents a new control scheme for robotic manipulation of deformable objects, which allows the robot to automatically contact then actively deform the deformable object by assessing the status of deformation in real time. Instead of designing multiple controllers and switching among them, the proposed method smoothly and stably integrates two control phases (i.e. region reaching and active deforming) into a single controller. The stability of the closed-loop system is rigorously proved with the consideration of the uncertain deformation model and uncalibrated cameras. Hence, the proposed control scheme enhances the autonomous capability of active deformable object manipulation. Experimental studies are conducted with different initial conditions to demonstrate the performance of the proposed controller.
URI: http://hdl.handle.net/10397/81172
ISBN: 978-1-5386-8094-0 (electronic)
978-1-5386-8093-3 (USB)
978-1-5386-8095-7 (print on demand(PoD))
DOI: 10.1109/IROS.2018.8593543
Appears in Collections:Conference Paper

Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page view(s)

44
Citations as of Sep 18, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.