Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/81054
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorLi, Yen_US
dc.creatorZhang, Pen_US
dc.creatorKang, Nen_US
dc.date.accessioned2019-07-22T01:56:30Z-
dc.date.available2019-07-22T01:56:30Z-
dc.identifier.issn0307-904Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/81054-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2018 Elsevier Inc. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Li, Y., Zhang, P., & Kang, N. (2019). Theoretical analysis of Rayleigh–Taylor instability on a spherical droplet in a gas stream. Applied Mathematical Modelling, 67, 634-644 is available at https://doi.org/10.1016/j.apm.2018.11.046en_US
dc.subjectLinear analysisen_US
dc.subjectNon-radial accelerationen_US
dc.subjectRayleigh–Taylor instabilityen_US
dc.subjectSecondary atomizationen_US
dc.subjectSpherical dropleten_US
dc.titleTheoretical analysis of Rayleigh-Taylor instability on a spherical droplet in a gas streamen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage634en_US
dc.identifier.epage644en_US
dc.identifier.volume67en_US
dc.identifier.doi10.1016/j.apm.2018.11.046en_US
dcterms.abstractA linear analysis of the Rayleigh–Taylor (R–T) instability on a spherical viscous liquid droplet in a gas stream is presented. Different from the most previous studies in which the external acceleration is usually assumed to be radial, the present study considers a unidirectional acceleration acting on a spherical droplet with arbitrary initial disturbances and therefore can provide insights into the influence of R–T instability on the atomization of spherical droplets. A general recursion relation coupling different spherical modes is derived and two physically prevalent limiting cases are discussed. In the limiting case of inviscid droplet, the critical Bond numbers to excite the instability and the growth rates for a given Bond number are obtained by solving two eigenvalue problems. In the limiting case of large droplet acceleration, different spherical modes are asymptotically decoupled and an explicit dispersion relation is derived. For given Bond number and Ohnesorge numbers, the critical size of stable droplet, the most-unstable mode and its corresponding growth rate are determined theoretically.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied mathematical modelling, Mar. 2019, v. 67, p.634-644en_US
dcterms.isPartOfApplied mathematical modellingen_US
dcterms.issued2019-03-
dc.identifier.scopus2-s2.0-85058414650-
dc.description.ros2018002493en_US
dc.description.validate201907 bcwhen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0501-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of Chinaen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS14479687-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhang_Theoretical_Analysis_Rayleigh–Taylor.pdfPre-Published version1.23 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

75
Last Week
0
Last month
Citations as of Mar 24, 2024

Downloads

25
Citations as of Mar 24, 2024

SCOPUSTM   
Citations

7
Citations as of Mar 29, 2024

WEB OF SCIENCETM
Citations

5
Citations as of Mar 28, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.