Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/80872
Title: Probabilistic optimal design and on-site adaptive commissioning of building air-conditioning systems concerning uncertainties
Authors: Li, H 
Wang, S 
Xiao, F 
Keywords: Adaptive commissioning
Air-conditioning system
Building energy saving
Probabilistic optimal design
Uncertainty analysis
Issue Date: 2019
Publisher: Elsevier
Source: Energy procedia, 2019, v. 158, p. 2725-2730 How to cite?
Journal: Energy procedia 
Abstract: Sizing of building air-conditioning systems is a critical issue in design practice concerning the building energy consumption in operation and risk of being undersized. In current practice, chillers and pumps are often oversized due to the rough consideration of uncertainties using safety factor to avoid the risk of being undersized, which results in significant energy waste in operation. In addition, the current design and commissioning do not provide means and flexibility for the air-conditioning systems to minimize their energy consumption when the systems are found oversized in operation. This paper presents a novel design and commissioning approach, consisting of probabilistic optimal design and on-site adaptive commissioning, for building air-conditioning systems to maximize their energy savings in operation. The probabilistic optimal design of an air-conditioning system involves two parts. One is probabilistic optimal design of chillers considering uncertainties, one is probabilistic optimal design of water circulation system considering uncertainties and the flexibility of on-site adaptive commissioning. Monte Carlo simulation is used to quantify uncertainties in system design and operation process. The on-site adaptive commissioning method has alternative commissioning schemes developed to maximize the energy saving based on the actual situation. A case study is performed to test and validate this new design and commissioning approach. Results show that about 20% energy saving could be achieved when the system is oversized by 20%, compared to conventional design and commissioning methods.
Description: 10th International Conference on Applied Energy, ICAE 2018, Hong Kong, 22-25 August 2018
URI: http://hdl.handle.net/10397/80872
EISSN: 1876-6102
DOI: 10.1016/j.egypro.2019.02.029
Rights: © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Peer-review under responsibility of the scientific committee of ICAE2018 – The 10th International Conference on Applied Energy. 10.1016/j.egypro.2019.02.029
The following publication Li, H., Wang, S., & Xiao, F. (2019). Probabilistic optimal design and on-site adaptive commissioning of building air-conditioning systems concerning uncertainties. Energy Procedia, 158, 2725-2730 is available at https://doi.org/10.1016/j.egypro.2019.02.029
Appears in Collections:Conference Paper

Files in This Item:
File Description SizeFormat 
Li_Probabilistic_optimal_design.pdf605.07 kBAdobe PDFView/Open
Access
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Contents

SCOPUSTM   
Citations

1
Citations as of Nov 30, 2019

Page view(s)

19
Citations as of Dec 4, 2019

Download(s)

14
Citations as of Dec 4, 2019

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.