Please use this identifier to cite or link to this item:
Title: Coordinated workload scheduling in hierarchical sensor networks for data fusion applications
Authors: Li, X
Kang, H
Cao, J 
Keywords: Agglomeration
Chlorine compounds
Energy policy
Fusion reactions
Nuclear physics
Sensor networks
Telecommunication equipment
Issue Date: 2007
Publisher: IEEE
Source: MASS 2007: 4th IEEE Internatonal Conference on Mobile Adhoc and Sensor Systems : 8-10 October 2007, Pisa, Italy, [p. 1-9] How to cite?
Abstract: To minimize the execution time of a sensing task over a multi-hop hierarchical sensor network, we present a coordinated scheduling method following the divisible load scheduling paradigm. The proposed scheduling strategy builds from eliminating transmission collisions and idle gaps between two successive data transmissions. We consider a sensor network consisting of several clusters. In a cluster, after related raw data measured by source nodes are collected at the fusion node, in-network data aggregation is further considered. The scheduling strategies consist of two phases: intra-cluster scheduling and inter-cluster scheduling. Intra-cluster scheduling deals with assigning different fractions of a sensing workload among source nodes in each cluster; inter-cluster scheduling involves the distribution of fused data among all fusion nodes. Closed-form solutions to the problem of task scheduling are derived. Finally, numerical examples are presented to demonstrate the impacts of different system parameters such as the number of sensor nodes, measurement, communication, and processing speed, on the finish time and energy consumption.
ISBN: 978-142-44-1455-0
Rights: © 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Appears in Collections:Conference Paper

Files in This Item:
File Description SizeFormat 
coordinated-workload_07.pdf8.04 MBAdobe PDFView/Open
View full-text via PolyU eLinks SFX Query
Show full item record
PIRA download icon_1.1View/Download Contents


Last Week
Last month
Citations as of Jul 31, 2018


Last Week
Last month
Citations as of Aug 11, 2018

Page view(s)

Last Week
Last month
Citations as of Aug 14, 2018


Citations as of Aug 14, 2018

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.