Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/80257
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.contributorChinese Mainland Affairs Office-
dc.contributorDepartment of Electrical Engineering-
dc.creatorTse, MY-
dc.creatorWei, XH-
dc.creatorWong, CM-
dc.creatorHuang, LB-
dc.creatorLam, KH-
dc.creatorDai, J-
dc.creatorHao, JH-
dc.date.accessioned2019-01-30T09:14:29Z-
dc.date.available2019-01-30T09:14:29Z-
dc.identifier.urihttp://hdl.handle.net/10397/80257-
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsThis journal is © The Royal Society of Chemistry 2018en_US
dc.rightsThis article is licensed under a Creative Commons Attibution-NonCommercial 3.0 Unported Licence (https://creativecommons.org/licenses/by-nc/3.0/)en_US
dc.rightsThe following publication Tse, M.Y., Wei, X.H., Wong, C.M., Huang, L.B., Lam, K.H., Dai, J., & Hao, J.H. (2018). Enhanced dielectric properties of colossal permittivity co-doped TiO2/polymer composite films. RSC advances, 8 (57), 32972-32978 is available at https://dx.doi.org/10.1039/c8ra07401aen_US
dc.titleEnhanced dielectric properties of colossal permittivity co-doped TiO2/polymer composite filmsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage32972-
dc.identifier.epage32978-
dc.identifier.volume8-
dc.identifier.issue57-
dc.identifier.doi10.1039/c8ra07401a-
dcterms.abstractColossal permittivity (CP) materials have shown great technological potential for advanced microelectronics and high-energy-density storage applications. However, developing high performance CP materials has been met with limited success because of low breakdown electric field and large dielectric loss. Here, composite films have been developed based on surface hydroxylated ceramic fillers, (Er + Nb) co-doped TiO2 embedded in poly(vinylidene fluoride trifluoroethylene) matrix by a simple technique. We report on simultaneously observing a large dielectric constant up to 300, exceptional low dielectric loss down to 0.04 in the low frequency range, and an acceptable breakdown electric field of 813 kV cm(-1) in the composites. Consequently, this work may pave the way for developing highly stable and superior dielectrics through a simple and scalable route to meet requirements of further miniaturization in microelectronic and energy-storage devices.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationRSC advances, 2018, v. 8, no. 57, p. 32972-32978-
dcterms.isPartOfRSC advancesonline only-
dcterms.issued2018-
dc.identifier.isiWOS:000448348200062-
dc.identifier.scopus2-s2.0-85054165193-
dc.identifier.eissn2046-2069-
dc.description.validate201901 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Tse_Colossal_Permittivity_Co-doped.pdf927.12 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

123
Last Week
1
Last month
Citations as of Apr 21, 2024

Downloads

137
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

18
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

18
Last Week
0
Last month
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.