Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/77874
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorJu, Len_US
dc.creatorLi, Xen_US
dc.creatorQiao, Zen_US
dc.creatorZhang, Hen_US
dc.date.accessioned2018-08-28T01:35:20Z-
dc.date.available2018-08-28T01:35:20Z-
dc.identifier.issn0025-5718en_US
dc.identifier.urihttp://hdl.handle.net/10397/77874-
dc.language.isoenen_US
dc.publisherAmerican Mathematical Societyen_US
dc.rights© Copyright 2017 American Mathematical Societyen_US
dc.rightsThis is a preliminary PDF of the author-produced manuscript that has been peer-reviewed and accepted for publication. The definitive publisher authenticated version is available online at https://doi.org/10.1090/mcom/3262en_US
dc.subjectEnergy stabilityen_US
dc.subjectError estimatesen_US
dc.subjectExponential time differencingen_US
dc.subjectFourier collocationen_US
dc.subjectLinear convex splittingen_US
dc.subjectThin film growthen_US
dc.titleEnergy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selectionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1859en_US
dc.identifier.epage1885en_US
dc.identifier.volume87en_US
dc.identifier.doi10.1090/mcom/3262en_US
dcterms.abstractIn this paper, we propose a class of exponential time differencing (ETD) schemes for solving the epitaxial growth model without slope selection. A linear convex splitting is first applied to the energy functional of the model, and then Fourier collocation and ETD-based multistep approximations are used respectively for spatial discretization and time integration of the corresponding gradient flow equation. Energy stabilities and error estimates of the first and second order ETD schemes are rigorously established in the fully discrete sense. We also numerically demonstrate the accuracy of the proposed schemes and simulate the coarsening dynamics with small diffusion coefficients. The results show the logarithm law for the energy decay and the power laws for growth of the surface roughness and the mound width, which are consistent with the existing theories in the literature.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMathematics of computation, 2018, v. 87, p. 1859-1885en_US
dcterms.isPartOfMathematics of computationen_US
dcterms.issued2018-
dc.identifier.isiWOS:000430424900011-
dc.identifier.scopus2-s2.0-85042640851-
dc.description.validate201808 bcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera0735-n01-
dc.identifier.SubFormID1201-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextRGC: 15302214en_US
dc.description.fundingTextOthers: 1-ZE33en_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ju_Energy_Stability_Error.pdfPre-Published version1.33 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

144
Last Week
0
Last month
Citations as of Apr 14, 2024

Downloads

121
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

91
Last Week
0
Last month
Citations as of Apr 12, 2024

WEB OF SCIENCETM
Citations

91
Last Week
0
Last month
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.