Please use this identifier to cite or link to this item:
Title: Few-layer tellurium : one-dimensional-like layered elementary semiconductor with striking physical properties
Authors: Qiao, J 
Pan, Y
Yang, F
Wang, C
Chai, Y 
Ji, W
Keywords: Covalent-like quasi-bonding
First-principles calculations
High carrier mobility
One-dimension-like layered materials
Two-dimensional systems
Issue Date: 2018
Publisher: Science in China Press
Source: Science bulletin, 2018, v. 63, no. 3, p. 159-168 How to cite?
Journal: Science bulletin 
Abstract: Few-layer Tellurium, an elementary semiconductor, succeeds most of striking physical properties that black phosphorus (BP) offers and could be feasibly synthesized by simple solution-based methods. It is comprised of non-covalently bound parallel Te chains, among which covalent-like feature appears. This feature is, we believe, another demonstration of the previously found covalent-like quasi-bonding (CLQB) where wavefunction hybridization does occur. The strength of this inter-chain CLQB is comparable with that of intra-chain covalent bonding, leading to closed stability of several Te allotropes. It also introduces a tunable bandgap varying from nearly direct 0.31 eV (bulk) to indirect 1.17 eV (2L) and four (two) complex, highly anisotropic and layer-dependent hole (electron) pockets in the first Brillouin zone. It also exhibits an extraordinarily high hole mobility (∼105 cm2/Vs) and strong optical absorption along the non-covalently bound direction, nearly isotropic and layer-dependent optical properties, large ideal strength over 20%, better environmental stability than BP and unusual crossover of force constants for interlayer shear and breathing modes. All these results manifest that the few-layer Te is an extraordinary-high-mobility, high optical absorption, intrinsic-anisotropy, low-cost-fabrication, tunable bandgap, better environmental stability and nearly direct bandgap semiconductor. This “one-dimension-like” few-layer Te, together with other geometrically similar layered materials, may promote the emergence of a new family of layered materials.
ISSN: 2095-9273
EISSN: 2095-9281
DOI: 10.1016/j.scib.2018.01.010
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Citations as of Sep 11, 2018


Citations as of Sep 18, 2018

Page view(s)

Citations as of Sep 18, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.