Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/77536
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorHuang, Wen_US
dc.creatorJi, Hen_US
dc.creatorQiu, Jen_US
dc.creatorCheng, Len_US
dc.date.accessioned2018-08-28T01:33:03Z-
dc.date.available2018-08-28T01:33:03Z-
dc.identifier.issn0022-460Xen_US
dc.identifier.urihttp://hdl.handle.net/10397/77536-
dc.language.isoenen_US
dc.publisherAcademic Pressen_US
dc.rights© 2017 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Huang, W., Ji, H., Qiu, J., & Cheng, L. (2018). Analysis of ray trajectories of flexural waves propagating over generalized acoustic black hole indentations. Journal of Sound and Vibration, 417, 216-226 is available at https://doi.org/10.1016/j.jsv.2017.12.012.en_US
dc.subjectAcoustic black holeen_US
dc.subjectFlexural waveen_US
dc.subjectFocalizationen_US
dc.subjectRay trajectoriesen_US
dc.titleAnalysis of ray trajectories of flexural waves propagating over generalized acoustic black hole indentationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage216en_US
dc.identifier.epage226en_US
dc.identifier.volume417en_US
dc.identifier.doi10.1016/j.jsv.2017.12.012en_US
dcterms.abstractAn Acoustic Black Hole (ABH) indentation embedded in thin-walled structures has been proved remarkably useful for broadband flexural wave focalization, in which the phase velocity of the flexural waves and the refractive index of the media undergo gradual changes from the outside towards the center of the indentation. A generalized two-dimensional ABH indentation can be defined by three geometric parameters: a power index, an extra thickness and a radius of a plateau at the indentation center. The dependence of the energy focalization on these parameters as well as the energy focalization process is of paramount importance for the understanding and design of effective ABH indentations. This work aims at investigating the energy focalization characteristics of flexural waves in such generalized ABH indentations. The calculation of the flexural ray trajectories is conducted to reveal and analyze the wave propagation features through numerical integration of the eikonal equation from the Geometric Acoustics Approximation (GAA). The theoretical results are verified by both experiment using wave visualization technique based on laser acoustic scanning method and finite element (FE) simulations. Finally, the influence of the geometric parameters on the flexural wave focalization characteristics in ABH indentations is discussed in detail.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of sound and vibration, 17 Mar. 2018, v. 417, p. 216-226en_US
dcterms.isPartOfJournal of sound and vibrationen_US
dcterms.issued2018-03-17-
dc.identifier.isiWOS:000426148200014-
dc.identifier.scopus2-s2.0-85041502352-
dc.identifier.eissn1095-8568en_US
dc.identifier.rosgroupid2017006336-
dc.description.ros2017-2018 > Academic research: not refereed > Publication in policy or professional journalen_US
dc.description.validate201808 bcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0673-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; National Natural Science Foundation of Jiangsu Province; Aeronautical Science Fund; Fundamental Research Funds for the Central Universitiesen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6816645-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Cheng_Analysis_Ray_Trajectories.pdfPre-Published version2.83 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

108
Last Week
0
Last month
Citations as of Apr 14, 2024

Downloads

56
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

79
Last Week
1
Last month
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

59
Last Week
1
Last month
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.