Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/76590
Title: On inequalities for alternating trigonometric sums
Authors: Alzer, H
Kwong, MK 
Keywords: Trigonometric sums
Inequalities
Sharp bounds
Absolutely monotonic.
Issue Date: 2017
Publisher: Kossuth Lajos Tudomanyegyetem
Source: Publicationes mathematicae-debrecen, 2017, v. 90, no. 1-2, p. 205-216 How to cite?
Journal: Publicationes mathematicae-debrecen 
Abstract: We present various inequalities for alternating trigonometric sums. Among others, we prove that the double -inequality 1-root 2/3 <= Sigma(n)(k=1)(-1)(k-1) sin(2)((2k-1)x)/2k-1 <= 1 is valid for all natural numbers n and real numbers x. Both bounds are sharp.
URI: http://hdl.handle.net/10397/76590
ISSN: 0033-3883
DOI: 10.5486/PMD.2017.7575
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.