Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/76514
Title: Bio-mimicking TiO2 architectures for enhanced photocatalytic activity under UV and visible light
Authors: Hashemizadeh, I
Tsang, DCW 
Ng, YH
Wu, ZJ
Golovko, V
Yip, ACK
Issue Date: 2017
Publisher: Royal Society of Chemistry
Source: RSC advances, 2017, v. 7, no. 62, p. 39098-39108 How to cite?
Journal: RSC advances 
Abstract: Green leaves are responsible for natural photosynthesis in plants and their unique structures offer the most efficient blueprint for artificial materials in terms of solar energy capture and utilisation. The full architecture of the leaf photosystem was successfully replicated at both the nano and micro levels using biotemplating with TiO2. This approach resulted in a highly porous structure that can be used as a photocatalyst with enhanced properties such as improved visible light-harvesting ability. Scanning and transmission electron microscopy images of the final products confirmed that the detailed microscale framework and nanostructures, such as the chloroplast and the thylakoids were well replicated. Biotemplated artificial TiO2 leaves with the architecture of Camellia tree leaves outperformed well-known P25 TiO2 in photocatalytic degradation of methylene blue dye under visible light: more than twofold in the case of blue (440 nm) and ca. one and a half times under green (515 nm) light. Also, the carbon dioxide yield of photocatalytic oxidation of ethanol catalysed by the biotemplated TiO2 material was approximately 1.3 times higher than the CO2 produced by P25 under green light. We attributed this enhanced visible light photocatalytic performance to the light-harvesting features and to the high surface area imparted by the interconnected nanosheets (replicating the thylakoids) resulting from our improved biotemplating method. The method reported in this work presents a facile route for the production of synthetic inorganic materials which possess morphologies similar to that present in the natural template materials.
URI: http://hdl.handle.net/10397/76514
ISSN: 2046-2069
EISSN: 2046-2069
DOI: 10.1039/c7ra04185c
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

1
Citations as of Dec 14, 2018

WEB OF SCIENCETM
Citations

2
Last Week
0
Last month
Citations as of Dec 15, 2018

Page view(s)

19
Citations as of Dec 10, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.