Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/76244
Title: Multilevel contextual 3-D CNNs for false positive reduction in pulmonary nodule detection
Authors: Dou, Q
Chen, H
Yu, LQ
Qin, J 
Heng, PA
Keywords: Computer-aided diagnosis
Deep learning
False positive reduction
Pulmonary nodule detection
3-D convolutional neural networks
Issue Date: 2017
Publisher: Institute of Electrical and Electronics Engineers
Source: IEEE transactions on biomedical engineering, 2017, v. 64, no. 7, p. 1558-1567 How to cite?
Journal: IEEE transactions on biomedical engineering 
Abstract: Objective: False positive reduction is one of the most crucial components in an automated pulmonary nodule detection system, which plays an important role in lung cancer diagnosis and early treatment. The objective of this paper is to effectively address the challenges in this task and therefore to accurately discriminate the true nodules from a large number of candidates. Methods: We propose a novel method employing three-dimensional (3-D) convolutional neural networks (CNNs) for false positive reduction in automated pulmonary nodule detection from volumetric computed tomography (CT) scans. Compared with its 2-D counterparts, the 3-D CNNs can encode richer spatial information and extract more representative features via their hierarchical architecture trained with 3-D samples. More importantly, we further propose a simple yet effective strategy to encode multilevel contextual information to meet the challenges coming with the large variations and hard mimics of pulmonary nodules. Results: The proposed framework has been extensively validated in the LUNA16 challenge held in conjunction with ISBI 2016, where we achieved the highest competition performance metric (CPM) score in the false positive reduction track. Conclusion: Experimental results demonstrated the importance and effectiveness of integrating multilevel contextual information into 3-D CNN framework for automated pulmonary nodule detection in volumetric CT data. Significance: While our method is tailored for pulmonary nodule detection, the proposed framework is general and can be easily extended to many other 3-D object detection tasks from volumetric medical images, where the targeting objects have large variations and are accompanied by a number of hard mimics.
URI: http://hdl.handle.net/10397/76244
ISSN: 0018-9294
EISSN: 1558-2531
DOI: 10.1109/TBME.2016.2613502
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

5
Last Week
0
Last month
Citations as of Dec 5, 2018

WEB OF SCIENCETM
Citations

29
Last Week
2
Last month
Citations as of Dec 13, 2018

Page view(s)

40
Last Week
1
Last month
Citations as of Dec 9, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.