Please use this identifier to cite or link to this item:
Title: Hierarchical CoMoO4@Co3O4 nanocomposites on an ordered macro-porous electrode plate as a multi-dimensional electrode in high-performance supercapacitors
Authors: Li, M 
Wang, YH
Yang, HX 
Chu, PK
Issue Date: 2017
Publisher: Royal Society of Chemistry
Source: Journal of materials chemistry A, 2017, v. 5, no. 33, p. 17312-17324 How to cite?
Journal: Journal of materials chemistry A 
Abstract: Nanoscale core-shell CoMoO4@Co3O4 composite materials are fabricated by a multi-step hydrothermal process on the surface and side wall of an ordered macro-porous electrode plate (OMEP) as the active electrode in a high power density storage device. The morphology, formation mechanism of the CoMoO4@Co3O4 nanostructure, and capacitor performance are systematically studied. The CoMoO4@Co3O4/OMEP electrode has a capacity of 7.13 F cm(-2) (1168.0 F g(-1)) at a constant current density of 0.6 A g(-1) and a retention ratio of 81.4% after 5000 cycles. The large specific capacitance and excellent rate capability can be attributed to the unique 3D ordered porous architecture which facilitates electron and ion transport, enlarges the liquid-solid interfacial area, prevents agglomeration of nanomaterials, and boosts the utilization efficiency of the active materials. Reconstruction on the surface of the porous structured substrate enhances the power density and cycling performance at large current densities. Using the CoMoO4@Co3O4/OMEP electrode as the positive electrode and active carbon/nickel foam (AC/NF) as the negative electrode, the electrochemical electrode packaged in a CR2025 battery cell as a miniature hybrid device exhibits stable power characteristics (10 000 cycles with 91.7% retention at a current of 0.1 A). The device produces large instantaneous power that charging it for 10 s and using three devices in series can power four parallel LED arrays at a current of 0.152 A.
ISSN: 2050-7488
EISSN: 2050-7496
DOI: 10.1039/c7ta04981a
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Nov 12, 2018


Last Week
Last month
Citations as of Nov 14, 2018

Page view(s)

Citations as of Nov 11, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.