Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/75902
Title: The atmospherically important reaction of hydroxyl radicals with methyl nitrate : a theoretical study involving the calculation of reaction mechanisms, enthalpies, activation energies, and rate coefficients
Authors: Ng, M 
Mok, DKW 
Lee, EPF 
Dyke, JM
Issue Date: 2017
Publisher: American Chemical Society
Source: Journal of physical chemistry A, 2017, v. 121, no. 35, p. 6554-6567 How to cite?
Journal: Journal of physical chemistry A 
Abstract: A theoretical study, involving the calculation of reaction enthalpies, activation energies, mechanisms, and rate coefficients, was made of the reaction of hydroxyl radicals with methyl nitrate, an important process for methyl nitrate removal in the earth's atmosphere. Four reaction channels were considered: formation of H2O + CH2ONO2, CH3OOH + NO2, CH3OH + NO3, and CH3O + HNO3. For all channels, geometry optimization and frequency calculations were performed at the M06-2X/6-31+G** level, while relative energies were improved at the UCCSD(T*)-F12/CBS level. The major channel is found to be the H abstraction channel, to give the products H2O + CH2ONO2. The reaction enthalpy (Delta H-298 KRX) of this channel is computed as -17.90 kcal mol(-1). Although the other reaction channels are also exothermic, their reaction barriers are high (>24 kcal mol(-1)), and therefore these reactions do not contribute to the overall rate coefficient in the temperature range considered (200-400 K). Pathways via three transition states were identified for the H abstraction channel. Rate coefficients were calculated for these pathways at various levels of variational transition state theory including tunneling. The results obtained are used to distinguish between two sets of experimental rate coefficients, measured in the temperature range of 200-400 K, one of which is approximately an order of magnitude greater than the other. This comparison, as well as the temperature dependence of the computed rate coefficients, shows that the lower experimental values are favored. The implications of the results to atmospheric chemistry are discussed.
URI: http://hdl.handle.net/10397/75902
ISSN: 1089-5639
DOI: 10.1021/acs.jpca.7b05035
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page view(s)

19
Last Week
1
Last month
Citations as of Dec 9, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.