Please use this identifier to cite or link to this item:
Title: Towards a scale-driven theory for spatial clustering
Other Titles: 尺度驱动的空间聚类理论
Authors: Li, Z 
Liu, Q 
Tang, J
Keywords: Hypothesis testing
Natural principle
Spatial clustering
Visual cognition
Issue Date: 2017
Publisher: SinoMaps Press
Source: 測繪学报 (Acta geodetica et cartographica sinica), 2017, v. 46, no. 10, p. 1534-1548 How to cite?
Journal: 測繪学报 (Acta geodetica et cartographica sinica) 
Abstract: 空间聚类是探索性空间数据分析的有力手段,不仅可以直接用于发现地理现象的分布格局与分布特征,亦可以为其他空间数据分析任务提供重要的预处理步骤。空间聚类有望成为大数据认知的突破口。空间聚类研究虽然已经引起了广泛关注,但是依然面临两大最根本的困境:"无中生有"和"无从理解"。"无中生有"指的是:绝大多数方法,即使针对不包含聚类结构的数据集,仍然会发现聚类;"无从理解"指的是:即使同一种聚类方法,采用不同的聚类参数就会获得千变万化的聚类结果,而这些结果的含义不明确。造成上述困境的根本原因在于:尺度没有在聚类模型中被当作重要参数而恰当地体现。为此,笔者受到人类视觉多尺度认知原理的启发,根据多尺度表达的"自然法则",建立了一套尺度驱动的空间聚类理论。首先将尺度定量化建模为聚类模型的参数,然后将空间聚类的尺度依赖性建模为一种假设检验问题,最后通过控制尺度参数以自动获得统计显著的多尺度聚类结果。在该理论指导下,可以构建适用不同应用需求的多尺度空间聚类模型,一方面降低了空间聚类过程中的主观性,另一方面有利于对空间聚类模式进行全面而深入的分析。
Spatial clustering plays a key role in exploratory geographical data analysis. It is important for investigating the distribution of geographical phenomena. Spatial clustering sometimes also serves as an important pre-processing for other geographical data analysis techniques. Although lots of attentions have been paid to spatial clustering, two serious obstacles remain to be tackled: ①clusters will always be discovered in any geographical dataset by spatial clustering algorithms, even if the input dataset is a random dataset; ②users feel difficult to interpret the various clustering results obtained by using different parameters. It is hypothesized that scale is not handled well in clustering process. As a result, a scale-driven theory for spatial clustering is introduced in this study, based on the human recognition theory and the natural principle of multi-scale representation. Scale is modeled as parameter of a clustering model, and the scale dependency in spatial clustering is handled by constructing a hypothesis testing, and multi-scale significant clusters can be easily discovered by controlling the scale parameters in an objective manner.
ISSN: 1001-1595
DOI: 10.11947/j.AGCS.2017.20170275
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record

Page view(s)

Last Week
Last month
Citations as of Oct 14, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.