Please use this identifier to cite or link to this item:
Title: Forecasting journey time distribution with consideration to abnormal traffic conditions
Authors: Zhong, RX
Luo, JC
Cai, HX
Sumalee, A 
Yuan, FF
Chow, AHF
Keywords: Adaptiveness to traffic incident
Functional principal component analysis
Parallel computing
Probabilistic nested delay operator
Travel time prediction
Issue Date: 2017
Publisher: Elsevier Ltd
Source: Transportation research. Part C, Emerging technologies, 2017, v. 85, p. 292-311 How to cite?
Journal: Transportation research. Part C, Emerging technologies 
Abstract: Travel time is an important index for managers to evaluate the performance of transportation systems and an intuitive measure for travelers to choose routes and departure times. An important part of the literature focuses on predicting instantaneous travel time under recurrent traffic conditions to disseminate traffic information. However, accurate travel time prediction is important for assessing the effects of abnormal traffic conditions and helping travelers make reliable travel decisions under such conditions. This study proposes an online travel time prediction model with emphasis on capturing the effects of anomalies. The model divides a path into short links. A Functional Principal Component Analysis (FPCA) framework is adopted to forecast link travel times based on historical data and real-time measurements. Furthermore, a probabilistic nested delay operator is used to calculate path travel time distributions. To ensure that the algorithm is fast enough for online applications, parallel computation architecture is introduced to overcome the computational burden of the FPCA. Finally, a rolling horizon structure is applied to online travel time prediction. Empirical results for Guangzhou Airport Expressway indicate that the proposed method can capture an abrupt change in traffic state and provide a promising and reliable travel time prediction at both the link and path levels. In the case where the original FPCA is modified for parallelization, accuracy and computational effort are evaluated and compared with those of the sequential algorithm. The proposed algorithm is found to require only a piece rather than a large set of traffic incident records.
ISSN: 0968-090X
DOI: 10.1016/j.trc.2017.08.021
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Dec 6, 2018


Last Week
Last month
Citations as of Dec 17, 2018

Page view(s)

Citations as of Dec 17, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.