Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/74819
Title: Date palm biochar-polymer composites : an investigation of electrical, mechanical, thermal and rheological characteristics
Authors: Poulose, AM
Elnour, AY
Anis, A
Shaikh, H
Al-Zahrani, SM
George, J
Al-Wabel, MI
Usman, AR
Ok, YS
Tsang, DCW 
Sarmah, AK
Keywords: Biochar
Date palm waste
Electrical conductivity
Polymer composites
Rheology
Issue Date: 2018
Publisher: Elsevier B.V.
Source: Science of the total environment, 2018, v. 619-620, p. 311-318 How to cite?
Journal: Science of the total environment 
Abstract: The application of biochar (BC) as a filler in polymers can be viewed as a sustainable approach that incorporates pyrolysed waste based value-added material and simultaneously mitigate bio-waste in a smart way. The overarching aim of this work was to investigate the electrical, mechanical, thermal and rheological properties of biocomposite developed by utilizing date palm waste-derived BC for the reinforcing of polypropylene (PP) matrix. Date palm waste derived BC prepared at (700 and 900 °C) were blended at different proportions with polypropylene and the resultant composites (BC/PP) were characterized using an array of techniques (scanning electron microscope, energy-dispersive X-ray spectroscopy and Fourier transform infra-red spectroscopy). Additionally the thermal, mechanical, electrical and rheological properties of the BC/PP composites were evaluated at different loading of BC content (from 0 to15% w/w). The mechanical properties of BC/PP composites showed an improvement in the tensile modulus while that of electrical characterization revealed an enhanced electrical conductivity with increased BC loading. Although the BC incorporation into the PP matrix has significantly reduced the total crystallinity of the resulted composites, however; a positive effect on the crystallization temperature (Tc) was observed. The rheological characterization of BC/PP composites revealed that the addition of BC had minimal effect on the storage modulus (G′) compared to the neat (PP).
URI: http://hdl.handle.net/10397/74819
ISSN: 0048-9697
EISSN: 1879-1026
DOI: 10.1016/j.scitotenv.2017.11.076
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.