Please use this identifier to cite or link to this item:
Title: An easily manipulated protocol for patterning of MXenes on paper for planar micro-supercapacitors
Authors: Hu, H 
Hua, T 
Issue Date: 2017
Publisher: Royal Society of Chemistry
Source: Journal of materials chemistry A, 2017, v. 5, no. 37, p. 19639-19648 How to cite?
Journal: Journal of materials chemistry A 
Abstract: Recently, a unique class of bidimensional layered transition-metal carbides/nitrides, namely MXenes, has shown great potential for use in high-performance on-chip microsupercapacitors (MSCs). Patterning of MXenes on film substrates to form coplanar interdigital electrodes is the key to realize the fabrication of high-performance MXene-based planar MSCs. Herein, through a combination of ordinary laser printing, vacuum-assisted deposition and physical sputtering, a simple protocol for fast and on-demand patterning of few-layered MXene flakes on paper into a coplanar arrangement to fabricate planar symmetric MSCs is reported. Benefiting from the as-obtained binder/conductive-additive free MXene-based interdigital electrodes with a unique layered porous structure and high electrical conductivity attributed to the good alignment along the c-axis of the closely restacked few-layered MXene flakes, the as-fabricated all-solid-state planar MXene-based symmetric MSCs can acquire a maximal areal capacitance of 27.29 mF cm-2 as the thickness of the MXene electroactive layer increases, achieving at least 460% enhancement compared to the value of advanced carbon-based planar symmetric MSCs (0.1-6 mF cm-2), without obvious deterioration of the volumetric capacitance. Our work provides a simple and convenient platform to fabricate MXene-based on-chip symmetric MSCs with thick coplanar interdigital electrodes to increase the capacity per device within a limited footprint.
ISSN: 2050-7488
EISSN: 2050-7496
DOI: 10.1039/c7ta04735e
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Oct 19, 2018


Last Week
Last month
Citations as of Oct 20, 2018

Page view(s)

Last Week
Last month
Citations as of Oct 14, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.