Please use this identifier to cite or link to this item:
Title: Oxidizing capacity of the rural atmosphere in Hong Kong, Southern China
Authors: Li, Z
Xue, L
Yang, X
Zha, Q 
Tham, YJ 
Yan, C 
Louie, PKK
Luk, CWY
Wang, T 
Wang, W
Keywords: Atmospheric oxidizing capacity
Observation-based model
OH reactivity
Radical source
Southern China
Issue Date: 2018
Publisher: Elsevier
Source: Science of the total environment, 2018, v. 612, p. 1114-1122 How to cite?
Journal: Science of the total environment 
Abstract: Atmospheric oxidizing capacity (AOC), dominated by the hydroxyl radical (OH), is an important index of the self-cleaning capacity of atmosphere and plays a vital role in the tropospheric chemistry. To better understand the key processes governing the chemistry of rural atmosphere of southern China, we analyzed the oxidation capacity and radical chemistry at a regional background site in Hong Kong from 23 August to 22 December 2012, which covered the summer, autumn and winter seasons. A chemical box model built on the latest Master Chemical Mechanism (v3.3) was used to elucidate the OH reactivity and sources of ROX radicals (ROX = OH + HO2 + RO2). The AOC showed a clear seasonal pattern with stronger intensity in late summer compared to autumn and winter. Reactions with NO2 (30%) and oxygenated volatile organic compounds (OVOCs) (31%) together dominated the OH loss in summer, while reactions with CO (38% in autumn and 39% in winter) and OVOCs (34% in autumn and 25% in winter) made larger contributions in autumn and winter. Photolysis of O3 (36%–47%) presented the major ROX source during all three seasons. The second largest ROx source was HONO photolysis (25%) in summer compared to HCHO photolysis in autumn (20%) and winter (21%). Besides, photolysis of other OVOCs was another important primary source of ROx radicals with average contributions of 14%, 13% and 20% for the summer, autumn and winter cases, respectively. Overall, the present study evaluates the oxidizing capacity of the rural atmosphere of South China and elucidates the varying characteristics of photochemical processes in different air masses.
ISSN: 0048-9697
EISSN: 1879-1026
DOI: 10.1016/j.scitotenv.2017.08.310
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Apr 6, 2019


Last Week
Last month
Citations as of Apr 8, 2019

Page view(s)

Last Week
Last month
Citations as of Jul 16, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.