Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/74519
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorLin, M-
dc.creatorLin, T-
dc.creatorZhang, H-
dc.date.accessioned2018-03-29T07:17:01Z-
dc.date.available2018-03-29T07:17:01Z-
dc.identifier.issn1705-5105-
dc.identifier.urihttp://hdl.handle.net/10397/74519-
dc.language.isoenen_US
dc.publisherInstitute for Scientific Computing and Informationen_US
dc.subjectError estimationen_US
dc.subjectEuler-Bernoulli beamen_US
dc.subjectHermite cubic finite elementen_US
dc.subjectInterface independent meshen_US
dc.subjectInterface problemen_US
dc.subjectMulti-point taylor expansionen_US
dc.subjectOptimal convergenceen_US
dc.titleError analysis of an immersed finite element method for Euler-bernoulli beam interface problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage822-
dc.identifier.epage841-
dc.identifier.volume14-
dc.identifier.issue6-
dcterms.abstractThis article presents an error analysis of a Hermite cubic immersed finite element (IFE) method for solving interface problems of the differential equation modeling a Euler-Bernoulli beam made up of multiple materials together with suitable jump conditions at material interfaces. The analysis consists of three essential groups. The first group is about IFE functions including bounds for the IFE shape functions and inverse inequalities. The second group is about error bounds for IFE interpolation derived with a multi-point Taylor expansion technique. The last group, and perhaps the most important group, is for proving the optimal convergence of the IFE solution generated by the usual Galerkin scheme based on the Hermite cubic IFE space considered in this article.-
dcterms.bibliographicCitationInternational journal of numerical analysis and modeling, 2017, v. 14, no. 6, p. 822-841-
dcterms.isPartOfInternational journal of numerical analysis and modeling-
dcterms.issued2017-
dc.identifier.scopus2-s2.0-85029356060-
dc.identifier.eissn1705-5105-
dc.description.validate201802 bcrc-
Appears in Collections:Journal/Magazine Article
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

SCOPUSTM   
Citations

6
Last Week
0
Last month
Citations as of Feb 16, 2020

Page view(s)

72
Last Week
0
Last month
Citations as of Jul 12, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.