Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/74470
Title: Characterizing prolonged heat effects on mortality in a sub-tropical high-density city, Hong Kong
Authors: Ho, HC 
Lau, KKL
Ren, C
Ng, E
Keywords: Heat wave definition
Prolonged heat
Short-term mortality risk
Sub-tropical high-density cities
Temperature-mortality relationship
Issue Date: 2017
Publisher: Springer
Source: International journal of biometeorology, 2017, p. 1-10 How to cite?
Journal: International journal of biometeorology 
Abstract: Extreme hot weather events are likely to increase under future climate change, and it is exacerbated in urban areas due to the complex urban settings. It causes excess mortality due to prolonged exposure to such extreme heat. However, there is lack of universal definition of prolonged heat or heat wave, which leads to inadequacies of associated risk preparedness. Previous studies focused on estimating temperature-mortality relationship based on temperature thresholds for assessing heat-related health risks but only several studies investigated the association between types of prolonged heat and excess mortality. However, most studies focused on one or a few isolated heat waves, which cannot demonstrate typical scenarios that population has experienced. In addition, there are limited studies on the difference between daytime and nighttime temperature, resulting in insufficiency to conclude the effect of prolonged heat. In sub-tropical high-density cities where prolonged heat is common in summer, it is important to obtain a comprehensive understanding of prolonged heat for a complete assessment of heat-related health risks. In this study, six types of prolonged heat were examined by using a time-stratified analysis. We found that more consecutive hot nights contribute to higher mortality risk while the number of consecutive hot days does not have significant association with excess mortality. For a day after five consecutive hot nights, there were 7.99% [7.64%, 8.35%], 7.74% [6.93%, 8.55%], and 8.14% [7.38%, 8.88%] increases in all-cause, cardiovascular, and respiratory mortality, respectively. Non-consecutive hot days or nights are also found to contribute to short-term mortality risk. For a 7-day-period with at least five non-consecutive hot days and nights, there was 15.61% [14.52%, 16.70%] increase in all-cause mortality at lag 0–1, but only −2.00% [−2.83%, −1.17%] at lag 2–3. Differences in the temperature-mortality relationship caused by hot days and hot nights imply the need to categorize prolonged heat for public health surveillance. Findings also contribute to potential improvement to existing heat-health warning system.
URI: http://hdl.handle.net/10397/74470
ISSN: 0020-7128
EISSN: 0020-7128
DOI: 10.1007/s00484-017-1383-4
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

2
Last Week
0
Last month
Citations as of Jul 15, 2018

WEB OF SCIENCETM
Citations

1
Last Week
0
Last month
Citations as of Jul 11, 2018

Page view(s)

9
Citations as of Jul 16, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.