Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/74303
Title: Rail crack monitoring using fiber optic based ultrasonic guided wave detection technology
Authors: Wang, J 
Yuan, M 
Ni, YQ 
Issue Date: 2017
Publisher: DEStech Publications
Source: In FK Chang & F Kopsaftopoulos (Eds.), Structural Health Monitoring 2017 Real-Time Material State Awareness and Data-Driven Safety Assurance ; Proceedings of the Eleventh International Workshop on Structural Health Monitoring, September 12-14, 2017, 2017, v. 1, p. 1763-1770 . Lancaster, PA: DEStech Publications, 2017. How to cite?
Abstract: Rail health conditions are among the top concerns in the area of train safety. In this study, a fiber optic monitoring system is developed to achieve ultrasonic guided wave based rail crack detection. Although fiber Bragg grating (FBG) sensor is a wellknown suitable candidate for long-distance monitoring of rail, the sampling speed of commercially available optic spectrum analyzers limits their application to ultrasonic wave detection. A high-speed FBG interferometric interrogation module is developed, which constitutes the rail monitoring system in conjunction with an active wave generation module and a sensing network. To find appropriate excitation frequency and FBG dimension for ultrasonic guided wave generation and reception, dispersion analysis of rail, a waveguide with complex cross-section, is conducted to guide subsequent design of damage detection experiment. The system and the crack detection technique are then implemented on a long full-scale rail segment, by deploying PZT (lead zirconate titanate) actuator and FBG sensor in pitch-catch and pulse-echo configurations. Artificial cracks in different lengths are introduced to the rail. Frequency-domain analysis of the rail responses is used to identify the damageinduced discrimination after direct observation of time-domain signals. Power spectral density analysis of the purified signals, assisted by discrete wavelet filtering, leads to the graphic presentation of rail integrity.
URI: http://hdl.handle.net/10397/74303
ISBN: 9781605953304
Appears in Collections:Conference Paper

Access
View full-text via PolyU eLinks SFX Query
Show full item record

SCOPUSTM   
Citations

1
Last Week
0
Last month
Citations as of May 22, 2020

Page view(s)

114
Last Week
1
Last month
Citations as of Jun 1, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.