Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/74223
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.creatorWang, Yen_US
dc.creatorWu, Ben_US
dc.date.accessioned2018-03-29T07:16:24Z-
dc.date.available2018-03-29T07:16:24Z-
dc.identifier.issn1682-1750en_US
dc.identifier.urihttp://hdl.handle.net/10397/74223-
dc.description2017 International Symposium on Planetary Remote Sensing and Mapping, PRSM 2017, 13 - 16 August 2017en_US
dc.language.isoenen_US
dc.publisherCopernicus GmbHen_US
dc.rights© Authors 2017. CC BY 4.0 License.en_US
dc.subjectCorrelationen_US
dc.subjectDEMen_US
dc.subjectHiRISEen_US
dc.subjectMarsen_US
dc.subjectMOLAen_US
dc.subjectSlopen_US
dc.titleImproved large-scale slope analysis on mars based on correlation of slopes derived with different baselinesen_US
dc.typeConference Paperen_US
dc.identifier.spage155en_US
dc.identifier.epage161en_US
dc.identifier.volume42en_US
dc.identifier.issue3W1en_US
dc.identifier.doi10.5194/isprs-archives-XLII-3-W1-155-2017en_US
dcterms.abstractThe surface slopes of planetary bodies are important factors for exploration missions, such as landing site selection and rover manoeuvre. Generally, high-resolution digital elevation models (DEMs) such as those generated from the HiRISE images on Mars are preferred to generate detailed slopes with a better fidelity of terrain features. Unfortunately, high-resolution datasets normally only cover small area and are not always available. While lower resolution datasets, such as MOLA, provide global coverage of the Martian surface. Slopes generated from the low-resolution DEM will be based on a large baseline and be smoothed from the real situation. In order to carry out slope analysis at large scale on Martian surface based low-resolution data such as MOLA data, while alleviating the smoothness problem of slopes due to its low resolution, this paper presents an amplifying function of slopes derived from low-resolution DEMs based on the relationships between DEM resolutions and slopes. First, slope maps are derived from the HiRISE DEM (meter-level resolution DEM generated from HiRISE images) and a series of down-sampled HiRISE DEMs. The latter are used to simulate low-resolution DEMs. Then the high-resolution slope map is down- sampled to the same resolution with the slope map from the lower-resolution DEMs. Thus, a comparison can be conducted pixel-wise. For each pixel on the slope map derived from the lower-resolution DEM, it can reach the same value with the down-sampled HiRISE slope by multiplying an amplifying factor. Seven sets of HiRISE images with representative terrain types are used for correlation analysis. It shows that the relationship between the amplifying factors and the original MOLA slopes can be described by the exponential function. Verifications using other datasets show that after applying the proposed amplifying function, the updated slope maps give better representations of slopes on Martian surface compared with the original slopes.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationInternational archives of the photogrammetry, remote sensing and spatial information sciences, 2017, v. 42, no. 3W1, p. 155-161en_US
dcterms.isPartOfInternational archives of the photogrammetry, remote sensing and spatial information sciencesen_US
dcterms.issued2017-
dc.identifier.scopus2-s2.0-85027843122-
dc.relation.conferenceInternational Symposium on Planetary Remote Sensing and Mapping [PRSM]en_US
dc.identifier.eissn2194-9034en_US
dc.identifier.rosgroupid2017005154-
dc.description.ros2017-2018 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validate201802 bcrcen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
isprs-archives-XLII-3-W1-155-2017.pdf1.97 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

118
Last Week
2
Last month
Citations as of Apr 21, 2024

Downloads

35
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

3
Last Week
0
Last month
Citations as of Apr 26, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.