Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/73937
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical Engineeringen_US
dc.creatorWang, Yen_US
dc.creatorNiu, Sen_US
dc.creatorFu, Wen_US
dc.date.accessioned2018-03-29T07:15:41Z-
dc.date.available2018-03-29T07:15:41Z-
dc.identifier.issn0278-0046en_US
dc.identifier.urihttp://hdl.handle.net/10397/73937-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication Y. Wang, S. Niu and W. Fu, "Sensitivity Analysis and Optimal Design of a Dual Mechanical Port Bidirectional Flux-Modulated Machine," in IEEE Transactions on Industrial Electronics, vol. 65, no. 1, pp. 211-220, Jan. 2018 is available at https://doi.org/10.1109/TIE.2017.2719620en_US
dc.subjectDual mechanical porten_US
dc.subjectElectric continuously variable transmission (E-CVT)en_US
dc.subjectFinite element method (FEM)en_US
dc.subjectFlux modulationen_US
dc.subjectHybrid electrical vehicles (HEVs)en_US
dc.subjectOptimal designen_US
dc.titleSensitivity analysis and optimal design of a dual mechanical port bidirectional flux-modulated machineen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage211en_US
dc.identifier.epage220en_US
dc.identifier.volume65en_US
dc.identifier.issue1en_US
dc.identifier.doi10.1109/TIE.2017.2719620en_US
dcterms.abstractThis paper presents an optimal design methodology of a dual-mechanical-port bidirectional flux-modulated machine for electric continuously variable transmission (E-CVT) in hybrid electrical vehicles (HEV). The key is to utilize bidirectional flux modulation effect to combine two rotors and one stator together, aiming to realize electrical and mechanical power flexible split and combination. Due to the complexity of the machine structure, conventional optimization methods using analytical model are inapplicable. Therefore, an effective and practical method which combines the genetic algorithm and finite element method (GA-FEM) is proposed to optimize the performance of the machine in this paper. Since the computational cost increases exponentially with the increasing of parameter numbers, to reduce the computational cost in the optimization, the design parameters are divided into two levels basing on a sensitivity analysis. And then the sensitive parameters are optimized using the GA-FEM coupled method. Finally, a prototype is fabricated to verify the effectiveness of the optimal design.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE transactions on industrial electronics, Jan. 2018, v. 65, no. 1, p. 211-220en_US
dcterms.isPartOfIEEE transactions on industrial electronicsen_US
dcterms.issued2018-01-
dc.identifier.scopus2-s2.0-85021836800-
dc.identifier.eissn1557-9948en_US
dc.identifier.rosgroupid2017003004-
dc.description.ros2017-2018 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validate201802 bcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberEE-0431-
dc.description.fundingSourceRGCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6758372-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Sensitivity_Analysis_Optimal.pdfPre-Published version2.92 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

105
Last Week
0
Last month
Citations as of Apr 14, 2024

Downloads

95
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

55
Last Week
0
Last month
Citations as of Apr 12, 2024

WEB OF SCIENCETM
Citations

45
Last Week
0
Last month
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.