Please use this identifier to cite or link to this item:
Title: Hypothesis testing for two-sample functional/longitudinal data
Authors: Yang, Jin
Advisors: Liu, Chunling Catherine (AMA)
Keywords: Functional analysis
Multivariate analysis
Issue Date: 2018
Publisher: The Hong Kong Polytechnic University
Abstract: During recent two decades, functional data commonly arise from many scientific fields such as transportation flow, climatology, neurological science and human mortality among others. The corresponding data recorded may be in the form of curves, shapes, images and functions that may be correlated, multivariate, or both. The intrinsic infinite dimensionality of functional data poses challenges in the development of theory, methodology and computation for functional data analysis. Tests of significance are essential statistical problems and are challenging for functional data due to the demands coming from real world applications. Motivated by requirements in real-world data analysis, we have focused on two topics of study. 1) Multivariate functional data have received considerable attention. It is natural to validate whether two mean surfaces are homogeneous but existing work is few. 2) In existing literature, most testing methods were designed for validity of dense and regular functional data samples, whereas in practice, functional samples may be sparse and irregular or even partly dense. In such functional data setting, there is rare work for testing equality of covariance functions or mean curves. To address these problems, we aim to two targets: 1) We propose novel sequential and parallel projection testing procedures that can detect the difference in mean surfaces powerfully. Furthermore, we apply the idea to present testing statistics for test of equality of mean curves for two functional data samples irrespective of the data type. Furthermore, the other related work takes auxiliary information into consideration. We propose a new functional regression model to characterize the conditional mean of functional response given covariates. 2) We derive a novel test procedure for test of equality of covariance functions that can deal with any functional data type, even irregular or sparse data. In addition, by using the stringing technique, once a high-dimensional data can map into functional data, we excogitate a testing procedure for comparison of covariance matrices under the high-dimensional data setting. Our method outperforms the existing testing methods in high-dimensional data testing procedures. Almost all work mentioned above include asymptotic theory and rigorous theorem proof, intensive numerical experiments and real-world data analysis.
Description: xi, 155 pages : color illustrations
PolyU Library Call No.: [THS] LG51 .H577P AMA 2018 Yang
Rights: All rights reserved.
Appears in Collections:Thesis

Files in This Item:
File Description SizeFormat 
991022090659603411_link.htmFor PolyU Users167 BHTMLView/Open
991022090659603411_pira.pdfFor All Users (Non-printable)2.47 MBAdobe PDFView/Open
Show full item record
PIRA download icon_1.1View/Download Contents

Page view(s)

Citations as of Jan 14, 2019


Citations as of Jan 14, 2019

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.