Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/70510
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Electrical Engineeringen_US
dc.creatorTan, YZen_US
dc.creatorJin, Wen_US
dc.creatorYang, Fen_US
dc.creatorQi, Yen_US
dc.creatorZhang, CZen_US
dc.creatorLin, YCen_US
dc.creatorHo, HLen_US
dc.date.accessioned2017-12-28T06:17:06Z-
dc.date.available2017-12-28T06:17:06Z-
dc.identifier.issn0733-8724en_US
dc.identifier.urihttp://hdl.handle.net/10397/70510-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication Y. Tan et al., "Hollow-Core Fiber-Based High Finesse Resonating Cavity for High Sensitivity Gas Detection," in Journal of Lightwave Technology, vol. 35, no. 14, pp. 2887-2893, 15 July15, 2017 is available at https://doi.org/10.1109/JLT.2017.2705229en_US
dc.subjectFabry-Perot resonatoren_US
dc.subjectGas sensoren_US
dc.subjectOptical fiber sensoren_US
dc.subjectPhotonic crystal fiberen_US
dc.titleHollow-core fiber-based high finesse resonating cavity for high sensitivity gas detectionen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2887en_US
dc.identifier.epage2893en_US
dc.identifier.volume35en_US
dc.identifier.issue14en_US
dc.identifier.doi10.1109/JLT.2017.2705229en_US
dcterms.abstractHigh finesse hollow-core photonic bandgap fiber (HC-PBF) resonating Fabry-Perot gas cells are presented. These gas cells are made with a piece of HC-PBF sandwiched by two single mode fibers with mirrored ends. A HC-PBF cavity made with 6.75-cm-long HC-1550-06 fiber achieved a cavity finesse of 128, corresponding to an effective optical path length of similar to 5.5 m. Experiment with a 9.4-cm-long Fabry-Perot gas cell with a finesse of 68 demonstrated a detection limit of 7 ppm acetylene. Compared with a single-path nonresonating HC-PBF, the use of a high finesse resonating HC-PBF cavity can reduce significantly the effect of modal interference on gas detection and improve the detection sensitivity. The cavity-enhanced HC-PBF gas cells enable stronger light-gas interaction and can be used to develop all-fiber gas sensors with high sensitivity and fast response.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of lightwave technology, 15 July 2017, v. 35, no. 14, p. 2887-2893en_US
dcterms.isPartOfJournal of lightwave technologyen_US
dcterms.issued2017-07-15-
dc.identifier.isiWOS:000402881900016-
dc.identifier.ros2016006248-
dc.identifier.eissn1558-2213en_US
dc.identifier.rosgroupid2017006699-
dc.description.ros2017-2018 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validatebcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberEE-0506-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; The Hong Kong Polytechnic Universityen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6752605-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Tan_Hollow-Core_Fiber-Based_High.pdfPre-Published version1.05 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

111
Last Week
0
Last month
Citations as of Apr 14, 2024

Downloads

42
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

20
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

20
Last Week
0
Last month
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.