Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/70340
Title: Immersed finite element methods for the multi-layer porous wall model
Authors: Zhang, Huili
Advisors: Lin, Yanping (AMA)
Keywords: Porous materials -- Fluid dynamics -- Mathematical models
Cardiovascular system -- Diseases -- Treatment
Issue Date: 2017
Publisher: The Hong Kong Polytechnic University
Abstract: The dissertation is concerned with the multi-layer porous wall model which is proposed to simulate the drug transfer mechanism in the arterial wall when treat with the cardiovascular diseases. It is an interface problem with two types of interface points: the imperfect contact interface point at the first layer and the rough coefficient interface points at other layers. We firstly consider the linear and quadratic immersed finite element (IFE) methods to solve the steady-state problem. Then, we investigate fundamental properties of these IFE spaces. Through interpolation error analysis, we prove that these IFE spaces have optimal approximation capabilities. In addition, we get the optimal convergence rate by using both linear and quadratic IFE methods to solve the multi-layer porous wall model. Furthermore, we analyze the long time stability and the asymptotic behavior of the IFE method for the multi-layer porous wall model for the drug-eluting stents (DES). With the help of the IFE methods for the spatial descretization, and the implicit Euler scheme for the temporal discretization, respectively, we deduce the global stability of fully discrete solution. Then, we investigate the asymptotic behavior of the discrete scheme which reveals that the multi-layer porous wall model converges to the corresponding elliptic equation if the body force approaches to a steady-state. In addition, we use these IFE spaces to solve the unsteady problem. We prove that the backward Euler scheme has the optimal convergence rate in both the L² and H¹ norms. We also do some numerical experiments to verify the theoretical results. In the last part, some conclusions and future work plans are given.
Description: xvi, 108 pages : color illustrations
PolyU Library Call No.: [THS] LG51 .H577P AMA 2017 Zhang
URI: http://hdl.handle.net/10397/70340
Rights: All rights reserved.
Appears in Collections:Thesis

Files in This Item:
File Description SizeFormat 
991021959946403411_link.htmFor PolyU Users167 BHTMLView/Open
991021959946403411_pira.pdfFor All Users (Non-printable)874.46 kBAdobe PDFView/Open
Show full item record
PIRA download icon_1.1View/Download Contents

Page view(s)

11
Last Week
0
Last month
Citations as of Sep 24, 2018

Download(s)

4
Citations as of Sep 24, 2018

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.