Please use this identifier to cite or link to this item:
Title: Comparison of energy performance between PV double skin facades and PV insulating glass units
Authors: Wang, M
Peng, JQ
Li, NP
Yang, HX 
Wang, CL
Li, X
Lu, T
Keywords: Building integrated photovoltaics
Semi-transparent photovoltaics
PV double skin fa ade
PV insulating glass unit
Building energy efficiency
Issue Date: 2017
Publisher: Pergamon Press
Source: Applied energy, 2017, v. 194, p. 148-160 How to cite?
Journal: Applied energy 
Abstract: Building-integrated photovoltaic (BIPV) windows provide the benefits of generating electricity, reducing building cooling and heating energy consumption, and efficiently utilizing daylight simultaneously. In this paper, the overall energy performance of a PV double skin facade (PV-DSF) and a PV insulating glass unit (PV-IGU) is studied through comparative experiments on a test rig in Hong Kong. The PV-DSF means ventilated PV-DSF by default, if not special mentioned. It is found that the average solar heat gain coefficients (SHGCs) of the PV-DSF and the PV-IGU are 0.152 and 0.238, while the U-values are 2.535 W/m(2) K and 2.281 W/m(2) K. The results indicate that the PV-DSF has better performance than PV-IGU in reducing solar heat gains, while it has worse performance regarding thermal insulation. With a lower PV module temperature, the energy conversion efficiency of PV-DSF is 1.8% better than PV-IGU. Simulation models for the PV-DSF and the PV-IGU are developed and validated against experimental data. Using the validated models, the overall energy performances of PV-DSF and PV-IGU in five different climates of China are investigated. The results show that the average energy saving potential of the PV-DSF and the PV-IGU are 28.4% and 30%, respectively, compared to the commonly used insulating glass window in five different climates. On average, the performance of PV-IGU was 2% better performance than the ventilated PV-DSF in the five representative cities. However, if an appropriate ventilation control scheme was adopted, PV-DSF can have a much better performance than the PV-IGU. The models developed in this study can be used for selecting suitable PV windows in the design process, and the results achieved can be used as a guideline for utilizing PV windows in different climates.
ISSN: 0306-2619
EISSN: 1872-9118
DOI: 10.1016/j.apenergy.2017.03.019
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Sep 20, 2018


Last Week
Last month
Citations as of Sep 17, 2018

Page view(s)

Last Week
Last month
Citations as of Sep 17, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.