Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/67399
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorZeng, Zen_US
dc.creatorLiu, Men_US
dc.creatorXu, Hen_US
dc.creatorLiao, Yen_US
dc.creatorDuan, Fen_US
dc.creatorZhou, LMen_US
dc.creatorJin, Hen_US
dc.creatorZhang, Zen_US
dc.creatorSu, Zen_US
dc.date.accessioned2017-07-18T04:15:12Z-
dc.date.available2017-07-18T04:15:12Z-
dc.identifier.issn0008-6223en_US
dc.identifier.urihttp://hdl.handle.net/10397/67399-
dc.language.isoenen_US
dc.rights© 2017 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Zeng, Z., Liu, M., Xu, H., Liao, Y., Duan, F., Zhou, L. M., ... & Su, Z. (2017). Ultra-broadband frequency responsive sensor based on lightweight and flexible carbon nanostructured polymeric nanocomposites. Carbon, 121, 490-501 is available at https://doi.org/10.1016/j.carbon.2017.06.011en_US
dc.titleUltra-broadband frequency responsive sensor based on lightweight and flexible carbon nanostructured polymeric nanocompositesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage490en_US
dc.identifier.epage501en_US
dc.identifier.volume121en_US
dc.identifier.doi10.1016/j.carbon.2017.06.011en_US
dcterms.abstractStrain sensing in an ultra-broadband frequency regime up to 400 kHz is obtained with developed lightweight and flexible carbon nanostructured polymer composites, in a frequency range far broader than any piezoresistive sensor previously reported. Various loadings, from static and low-frequency cyclic stretches, through high-frequency vibration, to ultrahigh-frequency ultrasonic guided waves, are applied for evaluation of the sensors' performance. Diverse content and type of carbon nanofiller, microstructure of the conductive network in the matrix, and electromechanical responses of the nanocomposites under broadband-frequency strain are discussed, in conjunction with dynamic mechanical analysis and a theoretical nanoscale model, to advance insight into the sensing mechanism of the sensors. Implementation of ultrasonic guided wave-based in-situ structural health monitoring using networked sensors made of carbon black/polyvinylidene fluoride nanocomposites indicates the significant application potential of the developed sensor to serve as an ultra-broadband and high-frequency responsive flexible strain sensor.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCarbon, Sept. 2017, v. 121, p. 490-501en_US
dcterms.isPartOfCarbonen_US
dcterms.issued2017-09-
dc.identifier.scopus2-s2.0-85020668006-
dc.identifier.ros2016001638-
dc.source.typearen
dc.description.validate202207 bcvcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0779-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextHong Kong Innovation and Technology Commissionen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6753065-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Liao_Ultra-Broadband_Frequency_Responsive.pdfPre-Published version1.92 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

165
Last Week
0
Last month
Citations as of Apr 14, 2024

Downloads

52
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

53
Last Week
1
Last month
Citations as of Apr 12, 2024

WEB OF SCIENCETM
Citations

47
Last Week
0
Last month
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.