Please use this identifier to cite or link to this item:
Title: Emission color tuning through manipulating the energy transfer from VO4 3- to Eu3+ in single-phased LuVO4:Eu3+ phosphors
Authors: Kang, F
Li, L
Han, J
Lei, DY 
Peng, M
Issue Date: 2017
Publisher: Royal Society of Chemistry
Source: Journal of materials chemistry C, 2017, v. 5, no. 2, p. 390-398 How to cite?
Journal: Journal of materials chemistry C 
Abstract: Recently, rare earth (RE) ion doped single-phased phosphors, which can emit tunable colors upon single wavelength excitation, have received a great deal of attention, but most of them involve multiple dopants as luminescence centers. This work reports on single-phased LuVO4:Eu3+ phosphors with tunable emission colors upon a single wavelength excitation while using Eu3+ as a single dopant ion. The tunable emission is realized through precisely manipulating the energy transfer efficiency from VO4 3- to Eu3+ by controlling the Eu3+ doping content, which allows modulating the photoemission intensity ratio between VO4 3- and Eu3+ upon excitation at 265 nm and therefore color tuning from blue (0.2204, 0.2194) to red (0.6703, 0.2986). Time-resolved photoluminescence (PL) spectroscopy measurements reveal that the energy transfer process occurs 4 μs after the excitation and becomes dominant 10 μs later with the disappearance of the VO4 3- emission. The temperature-dependent PL spectra show that the energy transfer can be accelerated as the temperature increases, and it leads to abnormal enhancement of the Eu3+ emission at the earlier state. A similar scenario is not observed upon exciting the phosphors at the intrinsic absorption of Eu3+, which implies that the reversible energy transfer from Eu3+ to VO4 3- is impossible. Our results demonstrate a feasible strategy for tuning the emission color of single-phased phosphors through controlling the energy transfer process from the host to the dopant, and it opens up new possibilities for designing tunable luminescent materials for future optoelectronics applications.
ISSN: 2050-7526
EISSN: 2050-7534
DOI: 10.1039/c6tc04172h
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Aug 12, 2018


Last Week
Last month
Citations as of Aug 17, 2018

Page view(s)

Last Week
Last month
Citations as of Aug 13, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.