Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/65532
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorMcGoff, KA-
dc.creatorGuo, X-
dc.creatorDeckard, A-
dc.creatorKelliher, CM-
dc.creatorLeman, AR-
dc.creatorFrancey, LJ-
dc.creatorHogenesch, JB-
dc.creatorHaase, SB-
dc.creatorHarer, JL-
dc.date.accessioned2017-05-22T02:08:48Z-
dc.date.available2017-05-22T02:08:48Z-
dc.identifier.issn1474-7596-
dc.identifier.urihttp://hdl.handle.net/10397/65532-
dc.language.isoenen_US
dc.publisherBioMed Centralen_US
dc.rights© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.-
dc.rightsThe following publication McGoff, K. A., Guo, X., Deckard, A., Kelliher, C. M., Leman, A. R., Francey, L. J., Hogenesch, J. B., Haase, S. B, & Harer, J. L. (2016). The Local Edge Machine: inference of dynamic models of gene regulation. Genome biology, 17(1), 214 is available at http://dx.doi.org/10.1186/s13059-016-1076-z-
dc.subjectGene regulatory networksen_US
dc.subjectInferenceen_US
dc.subjectTime seriesen_US
dc.titleThe local edge machine : inference of dynamic models of gene regulationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume17-
dc.identifier.issue1-
dc.identifier.doi10.1186/s13059-016-1076-z-
dcterms.abstractWe present a novel approach, the Local Edge Machine, for the inference of regulatory interactions directly from time-series gene expression data. We demonstrate its performance, robustness, and scalability on in silico datasets with varying behaviors, sizes, and degrees of complexity. Moreover, we demonstrate its ability to incorporate biological prior information and make informative predictions on a well-characterized in vivo system using data from budding yeast that have been synchronized in the cell cycle. Finally, we use an atlas of transcription data in a mammalian circadian system to illustrate how the method can be used for discovery in the context of large complex networks.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationGenome biology, 2016, v. 17, no. 1, 214-
dcterms.isPartOfGenome biology-
dcterms.issued2016-
dc.identifier.isiWOS:000385766500002-
dc.identifier.scopus2-s2.0-84995753813-
dc.identifier.ros2016003176-
dc.identifier.artn214-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera0101-n01en_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
McGoff_Local_Edge_Machine.pdf1.04 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

149
Last Week
1
Last month
Citations as of Apr 21, 2024

Downloads

174
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

19
Last Week
0
Last month
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

17
Last Week
0
Last month
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.