Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/64909
PIRA download icon_1.1View/Download Full Text
Title: Shape and albedo from shading (SAfS) for pixel-level DEM generation from monocular images constrained by low-resolution DEM
Authors: Wu, B 
Liu, WC 
Grumpe, A
Wöhler, C
Issue Date: 2016
Source: International archives of the photogrammetry, remote sensing and spatial information sciences, 2016, v. XLI-B4, p. 521-527
Abstract: Lunar topographic information, e.g., lunar DEM (Digital Elevation Model), is very important for lunar exploration missions and scientific research. Lunar DEMs are typically generated from photogrammetric image processing or laser altimetry, of which photogrammetric methods require multiple stereo images of an area. DEMs generated from these methods are usually achieved by various interpolation techniques, leading to interpolation artifacts in the resulting DEM. On the other hand, photometric shape reconstruction, e.g., SfS (Shape from Shading), extensively studied in the field of Computer Vision has been introduced to pixel-level resolution DEM refinement. SfS methods have the ability to reconstruct pixel-wise terrain details that explain a given image of the terrain. If the terrain and its corresponding pixel-wise albedo were to be estimated simultaneously, this is a SAfS (Shape and Albedo from Shading) problem and it will be under-determined without additional information. Previous works show strong statistical regularities in albedo of natural objects, and this is even more logically valid in the case of lunar surface due to its lower surface albedo complexity than the Earth. In this paper we suggest a method that refines a lower-resolution DEM to pixel-level resolution given a monocular image of the coverage with known light source, at the same time we also estimate the corresponding pixel-wise albedo map. We regulate the behaviour of albedo and shape such that the optimized terrain and albedo are the likely solutions that explain the corresponding image. The parameters in the approach are optimized through a kernel-based relaxation framework to gain computational advantages. In this research we experimentally employ the Lunar-Lambertian model for reflectance modelling; the framework of the algorithm is expected to be independent of a specific reflectance model. Experiments are carried out using the monocular images from Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) (0.5 m spatial resolution), constrained by the SELENE and LRO Elevation Model (SLDEM 2015) of 60 m spatial resolution. The results indicate that local details are largely recovered by the algorithm while low frequency topographic consistency is affected by the low-resolution DEM.
Keywords: Moon
DEM
Shape and Albedo from Shading (SAfS)
Monocular Image
Publisher: Copernicus GmbH
Journal: International archives of the photogrammetry, remote sensing and spatial information sciences 
ISSN: 1682-1750
EISSN: 2194-9034
DOI: 10.5194/isprsarchives-XLI-B4-521-2016
Description: XXIII International Congress for Photogrammetry and Remote Sensing (ISPRS Congress), Commission IV, Prague, Czech Republic, 12-19 July 2016
Rights: © Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License.
This publication Wu, B., Liu, W. C., Grumpe, A., and Wöhler, C.: Shape and albedo from shading (SAfS) for pixel-level DEM generation from monocular images constrained by low-resolution DEM, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 2016, XLI-B4, 521-527 is available at https://doi.org/10.5194/isprs-archives-XLI-B4-521-2016
Appears in Collections:Conference Paper

Files in This Item:
File Description SizeFormat 
Wu_Shape_albedo_shading.pdf1.2 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

157
Last Week
2
Last month
Citations as of Mar 24, 2024

Downloads

121
Citations as of Mar 24, 2024

SCOPUSTM   
Citations

8
Last Week
0
Last month
Citations as of Mar 22, 2024

WEB OF SCIENCETM
Citations

5
Last Week
0
Last month
Citations as of Mar 28, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.