Please use this identifier to cite or link to this item:
Title: Shape and albedo from shading (SAfS) for pixel-level DEM generation from monocular images constrained by low-resolution DEM
Authors: Wu, BO 
Liu, WC
Grumpe, A
Wöhler, C
Keywords: Moon
Shape and Albedo from Shading (SAfS)
Monocular Image
Issue Date: 2016
Publisher: Copernicus GmbH
Source: International archives of the photogrammetry, remote sensing and spatial information sciences, 2016, v. XLI-B4, p. 521-527 How to cite?
Journal: International archives of the photogrammetry, remote sensing and spatial information sciences 
Abstract: Lunar topographic information, e.g., lunar DEM (Digital Elevation Model), is very important for lunar exploration missions and scientific research. Lunar DEMs are typically generated from photogrammetric image processing or laser altimetry, of which photogrammetric methods require multiple stereo images of an area. DEMs generated from these methods are usually achieved by various interpolation techniques, leading to interpolation artifacts in the resulting DEM. On the other hand, photometric shape reconstruction, e.g., SfS (Shape from Shading), extensively studied in the field of Computer Vision has been introduced to pixel-level resolution DEM refinement. SfS methods have the ability to reconstruct pixel-wise terrain details that explain a given image of the terrain. If the terrain and its corresponding pixel-wise albedo were to be estimated simultaneously, this is a SAfS (Shape and Albedo from Shading) problem and it will be under-determined without additional information. Previous works show strong statistical regularities in albedo of natural objects, and this is even more logically valid in the case of lunar surface due to its lower surface albedo complexity than the Earth. In this paper we suggest a method that refines a lower-resolution DEM to pixel-level resolution given a monocular image of the coverage with known light source, at the same time we also estimate the corresponding pixel-wise albedo map. We regulate the behaviour of albedo and shape such that the optimized terrain and albedo are the likely solutions that explain the corresponding image. The parameters in the approach are optimized through a kernel-based relaxation framework to gain computational advantages. In this research we experimentally employ the Lunar-Lambertian model for reflectance modelling; the framework of the algorithm is expected to be independent of a specific reflectance model. Experiments are carried out using the monocular images from Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) (0.5 m spatial resolution), constrained by the SELENE and LRO Elevation Model (SLDEM 2015) of 60 m spatial resolution. The results indicate that local details are largely recovered by the algorithm while low frequency topographic consistency is affected by the low-resolution D
Description: XXIII International Congress for Photogrammetry and Remote Sensing (ISPRS Congress), Commission IV, Prague, Czech Republic, 12-19 July 2016
ISSN: 1682-1750
EISSN: 2194-9034
DOI: 10.5194/isprsarchives-XLI-B4-521-2016
Appears in Collections:Conference Paper

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Jun 17, 2018


Last Week
Last month
Citations as of Jun 23, 2018

Page view(s)

Last Week
Last month
Citations as of Jun 17, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.