Please use this identifier to cite or link to this item:
Title: Evaluation of the impacts of end-of-life management strategies for deconstruction of a high-rise concrete framed office building
Authors: Chau, CK 
Xu, JM
Leung, TM
Ng, WY
Keywords: End-of-life (EOL)
Life cycle assessment (LCA)
Embodied energy
Issue Date: 2016
Publisher: Pergamon Press
Source: Applied energy, 2016, v. 185, no. Part 2, p. 1595-1603 How to cite?
Journal: Applied energy 
Abstract: Recently, greater attentions have been started to put on the end-of-life (EoL) phase of buildings. Recycling, reuse and incineration of deconstructed wastes can help relieve the landfill burden and recover some energy from existing building materials in order to reduce environment impacts and/or reduce energy consumption. Life cycle energy assessment (LCEA) was performed for the EoL phase of a high-rise concrete office building in Hong Kong. The amount of energy that could be saved at the EoL phase through implementation of a specific EoL management strategy was evaluated in terms of energy saving potential (ESP), which was defined as the percentage of energy savings from the salvage materials to the total embodied energy of the building during its initial construction. Recycling of aluminum (30.7% ESP) and recycling of external walls (30.6% ESP) contributed to most of the total energy saving. Maximum reuse provided higher energy savings than maximum recycling (38.5% vs 35.9% ESP), while maximum incineration was not able to bring any energy saving (−44.8% ESP). In addition, the best EoL management strategies for different materials and elements were found to vary with time after taking the remaining proportions of embodied energy into considerations. Implementing the best EoL management strategies for different materials gave an ESP of 54.4% for 50-year life span. The life span of a building exerted considerable influences on the amount of energy saving. Highest energy saving was gained by implementing the best EoL strategies for 70-year life span.
ISSN: 0306-2619
EISSN: 1872-9118
DOI: 10.1016/j.apenergy.2016.01.019
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Nov 14, 2018


Last Week
Last month
Citations as of Nov 17, 2018

Page view(s)

Last Week
Last month
Citations as of Nov 12, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.