Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/6356
Title: The inverted bivariate and multivariate loss functions : properties and applications
Authors: Tsoi, Sze Leong
Keywords: Statistics
Hong Kong Polytechnic University -- Dissertations
Issue Date: 2013
Publisher: The Hong Kong Polytechnic University
Abstract: The purpose of this research project is to develop a loss function by inverting the Dirichlet distribution. The motive is to explore the possibility of developing loss functions of higher dimension. Spiring (1993), Spiring and Yeung (1998) and Spiring and Leung (2002) developed a series of Inverted Probability Loss Functions (IPLFs), while most of them are univariate. A multivariate IPLF, which in theory, should have the capability of depicting financial loss when more than one quality characteristics are concerned. The Dirichlet distribution is chosen because of its addictiveness of random variables in nature and its ease to include any number of variables. To depict the long term financial loss of manufacturing a product, it is desired to calculate the expected loss by E[L] = {459} L(x)g(x)dx. L(x) is the loss function and g(x) is the conjugate function, which describes the measurement of the quality characteristic which the manufacturer is interested in. This research project focuses on developing a multivariate inverted probability loss function and some discussion will be made about the conjugate function. The prime objective of this research is to develop an inverted multivariate probability loss function. For this purpose, extending the conjugate function into higher dimension will also be discussed. Although it is highly desired that real data can be collected to form the conjugate function, sometimes it is not feasible to do so and simulation may be the solution to this situation. Three common random variate generation methods, namely the conditional approach, acceptance and rejection approach and gamma factors approach, are used to invert the Dirichlet distribution. The major distinction between the three aforementioned approaches lays in the method in obtaining the estimators, respectively, the method of moments, maximum likelihood estimation and a modified percentile matching method. The theory and the procedure underlying the methods in obtaining estimators are discussed in details and the sets of estimates obtained are then evaluated by the Chi-square goodness-of-fit test to compare the acceptability of the three estimation techniques. Cells arrangement is also discussed and verified by Peacock's two-dimensional Kolmogorov-Smirnov goodness-of-fit test, which is known for its conservativeness. Properties and various probable conjugate distributions are examined to compare the univariate IPLF with the multivariate IPLF. At last, the bivariate inverted normal loss function, introduced by Spiring (1993) and the inverted Dirichlet loss function are applied to data collected in solder paste composition and dimensions of fasteners, as an application of the proposed technique in depicting the financial loss due to deviation in production, and ultimately, to show the feasibility of such bivariate loss functions.
Description: xiv, 220 p. : ill. ; 30 cm.
PolyU Library Call No.: [THS] LG51 .H577M AMA 2013 Tsoi
URI: http://hdl.handle.net/10397/6356
Rights: All rights reserved.
Appears in Collections:Thesis

Files in This Item:
File Description SizeFormat 
b26390760_link.htmFor PolyU Users203 BHTMLView/Open
b26390760_ir.pdfFor All Users (Non-printable) 2.07 MBAdobe PDFView/Open
Show full item record

Page view(s)

208
Last Week
2
Last month
Checked on Jan 15, 2017

Download(s)

154
Checked on Jan 15, 2017

Google ScholarTM

Check



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.