Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/62293
Title: A refinement of Vietoris' inequality for cosine polynomials
Authors: Alzer, H
Kwong, MK
Keywords: Vietoris' theorem
inequalities
cosine polynomials
Sturm's theorem
Jacobi polynomials
Issue Date: 2016
Publisher: World Scientific
Source: Analysis and applications, 2016, v. 14, no. 5, p. 615-629 How to cite?
Journal: Analysis and applications 
Abstract: Let T-n(x) = Sigma(n)(k=0) b(k) cos(kx) with b(2k) = b(2k+ =1) = 1/4(k) ((2k)(k)) (k >= 0). In 1958, Vietoris proved that T-n(x) > 0 (n >= 1; x is an element of (0, pi)). We offer the following improvement of this result: The inequalities T-n(x) >= c(0) + c(1)x + c(2)x(2) > 0 (c(k) is an element of R, k = 0, 1, 2) hold for all n >= 1 and x is an element of (0, pi) if and only if c(0) = pi(2)c(2), c(1) = -2 pi c(2), 0 < c(2) <= alpha, where alpha = min(0 <= t<pi) T-6(t)/(t - pi)(2) = 0.12290....
URI: http://hdl.handle.net/10397/62293
ISSN: 0219-5305 (print)
1793-6861 (online)
DOI: 10.1142/S021953051550013X
Appears in Collections:Journal/Magazine Article

Access
View full-text via PolyU eLinks SFX Query
Show full item record

Page view(s)

40
Last Week
1
Last month
Checked on Dec 10, 2017

Google ScholarTM

Check

Altmetric



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.