Please use this identifier to cite or link to this item:
Title: The impact of float stitches on the resistance of conductive knitted structures
Authors: Liu, S
Yang, C
Zhao, Y
Tao, XM 
Tong, J
Li, L 
Keywords: Conductive knitted fabric
Float stitch
Geometric model
Resistive network
Issue Date: 2016
Publisher: SAGE Publications
Source: Textile research journal, 2016, v. 86, no. 14, p. 1455-1473 How to cite?
Journal: Textile research journal 
Abstract: Currently, conductive yarn can be knitted into fabrics to endow the traditional textile product with special attributes, such as shielding electromagnetic waves, detecting and transferring electrical signals, replacing fingers in the operation of touch-screen panels, etc. Research on the electrical properties of conductive knitted fabrics can contribute to the development of such functional textiles. A few studies have been conducted, and it has been found that the variation of the knitted structure can impact the properties of a conductive knitted fabric. Among the properties of conductive fabrics, the resistance value is an important index to decide the performance of electrical functions. Several researchers have conducted practical experiments and theoretical analyses to predict the resistance of plain weft knitted structure. However, in addition to the plain weft knitted structure, the float structure is another important basic knitted structure. Therefore, a geometric model incorporated with a simplified resistive network is proposed for the calculation of the electrical resistance of conductive knitted fabrics with float stitches and will be studied in this paper. The aim of the model is to determine the resistive effects of conductive float stitches on knitted structures with different numbers of knitted courses and wales. The geometric model can provide a detailed mathematical description of a single knitted loop in the Cartesian coordinate system. With the simplified resistive network, the resistance of conductive float stitches in knitted fabrics can be modeled and computed. The experimental results revealed that the proposed model could approximate the equivalent electrical resistance of the conductive float stitches in knitted fabrics to an acceptable degree.
ISSN: 0040-5175
EISSN: 1746-7748
DOI: 10.1177/0040517514555798
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record

Page view(s)

Last Week
Last month
Citations as of Jul 23, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.