Please use this identifier to cite or link to this item:
Title: Influence of waste cooking oil biodiesel on the nanostructure and volatility of particles emitted by a direct-injection diesel engine
Authors: Wei, L
Cheung, CS 
Ning, Z
Issue Date: 2016
Publisher: Taylor & Francis
Source: Aerosol science and technology, 2016, v. 50, no. 9, p. 893-905 How to cite?
Journal: Aerosol science and technology 
Abstract: To reduce air pollution and the reliance on fossil fuel, biodiesel has been widely investigated as an alternative fuel for diesel engines. The purpose of this study is to investigate the influence of waste cooking oil (WCO) biodiesel on the physical properties and the oxidation reactivity of the particles emitted by a diesel engine operating on WCO biodiesel as the main fuel. Experiments were conducted on a direct-injection diesel engine fueled with biodiesel, B75 (75% biodiesel and 25% diesel on volume basis, v/v), B50, B20, and diesel fuel, at five engine loads and at an engine speed of 1920 rev/min. Particulate samples were collected to analyze the particulate nanostructure, volatility, and oxidation characteristics. Biodiesel or low-load operation leads to smaller primary particles and more disordered nanostructures having shorter and more curved graphene layers. It can be found that particles from biodiesel, blended fuels, or low-load operation have higher volatile mass fractions and faster oxidation reaction rates than particles from diesel or heavy-load operation. The higher oxidation reaction rates are due mainly to the smaller particle size, the more disordered nanostructure, and the higher volatile mass fraction. It is also found that changes in primary particle size and particulate nanostructure are not directly proportional to the biodiesel content, while changes in particulate volatility and particulate oxidation reactivity are proportional to the biodiesel content. The use of biodiesel can enhance particulate oxidation reactivity and the regeneration of soot particles in an after-treatment device.
ISSN: 0278-6826
EISSN: 1521-7388
DOI: 10.1080/02786826.2016.1203390
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Nov 2, 2018


Last Week
Last month
Citations as of Oct 20, 2018

Page view(s)

Last Week
Last month
Citations as of Nov 11, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.