Please use this identifier to cite or link to this item:
Title: LiDAR intensity correction and its study on wetland classification
Authors: Ding, Qiong
Keywords: Wetlands -- Remote sensing.
Remote sensing.
Digital mapping.
Hong Kong Polytechnic University -- Dissertations
Issue Date: 2013
Publisher: The Hong Kong Polytechnic University
Abstract: Wetlands have received intensive interdisciplinary attention as a unique ecosystem and valuable resources. However, many wetlands in the world are poorly mapped, infrequently mapped or unmapped due to the poor accessibility of wetlands. As a new technology, the airborne LiDAR system has been applied in wetland research. However, most of the studies used only one or two LiDAR observations to extract either terrain or vegetation in wetlands. This research aims at developing new methods to integrate both spatial and radiometric information provided by the airborne LiDAR system to improve mapping and classification of wetlands. To guarantee the accuracy of classification result, the input LiDAR attributes need to be ascertained. For the radiometric information of LiDAR data, proper normalization of the return strength image from the whole survey is needed. In this study, a novel automatic method is proposed to reduce intensity errors in large scale and multiple strips projects. The method considers both intensity discrepancies in strip overlaps and specular reflections in nadir regions. An overlap-driven adjustment is firstly used to remove discrepancies and then, a Phong model weighted filter is used to correct specular reflections in nadir regions. Significant improvement in the radiometric image is demonstrated by a 4 strip project over a wetland area of the Yellow River Delta (YRD), China. After that, the potential of LiDAR's multiple attributes (DSM, DTM, off-ground features, Slope map, multiple pulse returns, and normalized intensity) and other information (aerial photos and tidal data) for wetland classification has been exploited, based on a multi-level object-oriented classification method. By using this method, we are able to classify the YRD wetland into eight classes (wet meadow, forested swamp, Phragmites, Low Land, impervious surface, river, sea, and intertidal zone), which provides much more details than conventional remote sensing methods. The overall classify accuracy is 92.5% which is better or similar to other remote sensing methods.
Description: ix, 156 p. : ill. (some col.) ; 30 cm.
PolyU Library Call No.: [THS] LG51 .H577P LSGI 2013 Ding
Rights: All rights reserved.
Appears in Collections:Thesis

Files in This Item:
File Description SizeFormat 
b26390942_link.htmFor PolyU Users203 BHTMLView/Open
b26390942_ir.pdfFor All Users (Non-printable) 4.38 MBAdobe PDFView/Open
Show full item record
PIRA download icon_1.1View/Download Contents

Page view(s)

Last Week
Last month
Citations as of Oct 15, 2018


Citations as of Oct 15, 2018

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.