Please use this identifier to cite or link to this item:
Title: Experimental study on using electromagnetic devices on bridge stay cables for simultaneous energy harvesting and vibration damping
Authors: Shen, W
Zhu, S 
Zhu, H
Keywords: Electromagnetic damper
Stay cable
Vibration energy harvesting
Vibration mitigation
Vibration test
Issue Date: 2016
Publisher: Institute of Physics Publishing
Source: Smart materials and structures, 2016, v. 25, no. 6, 065011 How to cite?
Journal: Smart materials and structures 
Abstract: Flexible bridge stay cables are often vulnerable to problematic vibrations under dynamic excitations. However, from an energy perspective, such excessive vibrations denote a green and sustainable energy source to some electronic devices (such as semi-active dampers or wireless sensors) installed on the same cables. This paper presents an experimental study on a novel dual-function system called electromagnetic damper cum energy harvester (EMDEH). The proposed EMDEH, consisting of an electromagnetic device connected to an energy-harvesting circuit (EHC), simultaneously harvests cable vibration energy and provides sufficient damping to the cables. A fixed-duty-cycle buck-boost converter is employed as the EHC, which emulates a resistive load and provides approximately optimal damping and optimal energy harvesting efficiency when operating in discontinuous conduction mode. A 5.85 m long scaled stay cable installed with a prototype EMDEH is tested in the laboratory under a series of harmonic and random excitations. The EMDEH can achieve a control performance comparable to passive viscous dampers. An average electrical power of 31.6 and 21.51 mW is harvested under harmonic and random vibrations, respectively, corresponding to the efficiency of 16.9% and 13.8%, respectively. Moreover, this experimental study proves that optimal damping and energy harvesting can be achieved simultaneously, which answers a pending question regarding such a dual-objective optimization problem. Self-powered semi-active control systems or wireless sensor networks may be developed for bridge stay cables in the future based on the proposed concept in this study.
ISSN: 0964-1726
EISSN: 1361-665X
DOI: 10.1088/0964-1726/25/6/065011
Appears in Collections:Journal/Magazine Article

View full-text via PolyU eLinks SFX Query
Show full item record


Last Week
Last month
Citations as of Feb 9, 2019


Last Week
Last month
Citations as of Feb 16, 2019

Page view(s)

Last Week
Last month
Citations as of Feb 11, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.